Шпоры 4 семестр (Шпоры по билетам)

2020-05-10СтудИзба

Описание файла

Документ из архива "Шпоры по билетам", который расположен в категории "". Всё это находится в предмете "физика" из 4 семестр, которые можно найти в файловом архиве МГТУ им. Н.Э.Баумана. Не смотря на прямую связь этого архива с МГТУ им. Н.Э.Баумана, его также можно найти и в других разделах. .

Онлайн просмотр документа "Шпоры 4 семестр"

Текст из документа "Шпоры 4 семестр"

Билет 1.

1.Тепловое излучение. Интегральные и спектральные характеристики излучения. Закон Кирхгофа. Закон Стефана-Больцмана. Закон смещения Вина.

Тепловое излучение – вид излучения, который может находится в термодинамическом равновесии с излучателем и к анализу такого излучения применимы законы термодинамики.

Спектральная плотность энергетической светимости тела – мощность излучения с единицы площади поверхности тела а интервале частот единичной ширины:

dWν,ν+изл- энергия электромагнитного излучения, испускаемого за единицу времени(мощность излучения) с единицы площади поверхности в интервале частот от ν до ν+dν(Дж/м2). Интегральная энергетическая светимость можно найти, просуммировав по всем частотам:

RT=∫0 Rν,Tdν. Закон Кирхгофа – отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры Rν,T/Aν,T=rν,T. Закон Стефана-Больцмана

Re=σT4, т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры, σ-постоянная Стефана-Больцмана = 5,67·108 Вт/(м2·К4). Закон смещения Вина λмах=b/T, т.е. длина волны λмах, соответствующая максимальному значению спектральной плотности энергетической светимости черного тела, обратно пропорционально его термодинамической температуре,b- постоянная Вина =2,9·10-3 м·К. Закон Вина обьясняет, почему при понижении температуры нагретых тел в их спектре сильнее преобладает длинноволновое излучение.

2. Зонная теория твердых тел. Структура зон в металлах, полупроводниках и диэлектриках.

В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы- ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать. Что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер. Далее используем приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими заменяется действием на него стационарного эл.поля, обладающего периодичностью кристалл.решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. (см.рис). По мере сжатия нашей модели до кристал.решетки, т.е. когда расстояния между атомами станут равными межатомным, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются, образуется зонный энергетический спектр.

Образование зонного энергетического спектра в кристалле является квантово-механическим дефектом и вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т.е. перемещаться без изменения потенциальной энергии (туннельный эффект).

Энергия внешних может принимать значения в пределах закрашенных областей (см.рис), называемых разрешенными энергетическими зонами. Разрешенные энергетические зоны разделяются зонами запрещенных значений энергии, называемые запрещенными энергетическими зонами.

Билет 2.

1.Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Фотоны. Дуализм волновых и корпускулярных свойств излучения.

Фотоэффект наз.испускание электронов веществом под действием света. Это было обнаружено, когда проводится опыт: проскальзывание искры между шариками облегчится, если один осветить ультрафиолетовыми лучами. Первым исследовал фотоэффект Столетов. Он установил что:1) наиболее эффективное действие оказывает ультрафиолетовое излучение;2)под действием света вещество теряет только отрицательные заряды;3)сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Внутренний фотоэффект-это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. Вентильный фотоэффект- разновидность внутреннего возникновение э.д.с. при освещении контакта двух разных полупроводников или полупроводника и металла(при отсутствии внешнего эл.поля). 3 закона фотоэффекта:

1.Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света(сила фототока насыщения пропорциональна энергетической освещенности Ее катода).

2.Максимальная начальная скорость( максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется его частотой ν.

3.Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота ν0 света( зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

hν=A+mvmax2/2-уравнение Эйнштейна для внешнего фотоэффекта (объясняет 2 и 3 законы). А –работа выходае.Максимальная кинетическая энергия фотоэлектрона возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), т.к. ни А, ни ν от интенсивности света не зависят(2 закон). Т.к. с уменьшением частоты света кинет.энергия фотоэлектрона уменьшается, то при некоторой достаточно малой частоте ν=ν0 кинет.энергия фотоэлектронов станет равной 0 и фотоэффект прекратится(3 закон). Получили ν0=A/h- красная граница фотоэффекта для данного металла. Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями, названными фотонами. Энергия фотона ε0=hν/c2. Его масса находится из закона взаимосвязи массы и энергии mγ=hν/c2.

Из отношения E=ħω следует,что 1)масса покоя фотона равна0 2)фотон всегда движется со скоростью p=ħ2π/λ=ħk(k-волновое число. р и к направлены в сторону распространения волны.

Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, и корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света( с этим связано существование красной границы фотоэффекта).

2. Собственная проводимость полупроводников. Концентрация электронов и дырок в чистых полупроводниках. Уровень Ферми в чистых полупроводниках. Температурная зависимость проводимости беспримесных полупроводников.

Собственные полупроводники – химически чистые полупроводники, а их проводимость называется собственной проводимостью. В результате тепловых выбросов из зоны 1 в зону 2 в валентной зоне возникают вакантные состояния, получившие название дырок. Проводимость собственных полупроводников, обусловленная дырками, называется дырочной или р-типа.

Концентрация дырок в валентной зоне

С2- постоянная, зависящая от температуры и эффективной массы дырки (Эффектив.масса -величина, имеющая размерность массы и характеризующая динамические свойства электронов проводимости и дырок),Е1-энегрия, соответствующая верхней границе валентной зоны.

Т.к. для собственного полупроводника ne=np, то

Если эффективные массы электронов и дырок равны, тоС12 и следовательно –(Е2F)=E1-EF, откуда EF=ΔE/2, т.е. уровень Ферми в собственном полупроводнике расположен в середине запрещенной зоны.

Увеличение проводимости полупроводников с повышением температуры является их характерной особенностью (у металлов с повышением температуры проводимость уменьшается). С повышением температуры растет число электронов, которые вследствие теплового возбуждения переходят в зону проводимости и участвуют в проводимости.

Билет 3

1.Эффект Комптона.

Эффектом Комптона наз.упругое рассеяние коротковолнового электромагнитного излучения на свободных электронах вещества, сопровождающееся увеличением длины волны. Комптон экспериментально доказал Δλ=λ`-λ=2λcsin2(θ/2)( λ`-длина волны рассеянного излучения, λ-длина волны падающего света, λс- комптоновская длина волны( при рассеянии фотона на электроне λс=2,426 пм). Эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешний электрон нельзя считать свободным. Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например на протонах, однако из-за большой массы протона его отдача просматривается лишь при рассеянии фотонов с очень высокой энергией.

2.Принцип неразличимости тождественных частиц в квантовой механике. Фермионы и бозоны. Принцип Паули.

Билет 4

1.Опыты по рассеянию a-частиц. Ядерная модель атома. Постулаты Бора.

α-частицы возникают при радиоактивных превращениях; они являются положительно заряженными частицами с зарядом 2е и массой во много раз больше массы электрона. Пучки α-частиц обладают высокой монохроматичностью.

Резерфорд, исследуя прохождение α-частиц в веществе(через золотую фольгу толщиной 1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые α-частицы резко отклоняются от первоначального направления(даже до 180˚). Т.к. электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, как α-частицы, то Резерфорд сделал вывод что значительное отклонение α-частиц обусловлено из взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие α-частицы; следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это означает что положительный заряд атома сосредоточен в объеме, очень малом по сравнению с объемом атома.

На основании своих исследований Резерфорд в 1991г. предположил ядерную (планетарную) модель атома. Вокруг положительного ядра, имеющего заряд Ze(Z- порядковый номер элемента, е-элементарный заряд), размер 10-15-10-14 м и массу, практически равной массе атома, в области с линейными размерами порядка 10-10м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома.

Первый постулат Бора (постулат для стационарных состояний): в атоме существуют стационарные состояния( не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию

mevrn=ħn (n=1,2,3…) где me-масса электрона,v-его скорость по n-орбите радиуса rn,ħ=h/(2π)

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией hv=En-Em равной разности энергий соответствующих стационарных состояний (En и Em – соответственно энергии стационарных состояний атома до и после излучения(поглощения). При Em<En происходит излучение фотона, при Em>En- его поглощение.

2.Явление радиоактивного распада. Источники радиоактивного излучения. Радиоизотопный анализ.

Радиоактивность – способность некоторых атомов ядер самопроизвольно превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Различают естественную (наблюдается у неустойчивых изотопов, сущ. в природе) и искусственную( у изотопов, полученных в термоядерных реакциях) радиоактивность. Радиоактивное излучение бывает 3 типов:α-,β- и γ-излучение.

α-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей и малой проникающей способностью. α-Излучение представляет собой поток ядер гелия.

β-Излучение отклоняется электрическим и магнитными полями, его ионизирующая способность значительно меньше, а проникающая гораздо больше чем у α-частиц. β-Излучение представляет собой поток быстрых электронов.

γ-Излучение не отклоняется электрическим и магнитным полями, обладает относительно малой ионизирующей и очень большей проникающей способностью, при прохождении через кристаллы обнаруживается дифракция. γ-Излучение представляет собой коротковолновое электромагнитное излечение с чрезвычайно малой длиной волны λ<10-10 м и вследствие этого – ярко выраженные корпускулярные свойства, т.е. является потоком частиц – γ-квантов(фотонов).

Радиоактивные распад – естественное радиоактивное превращение ядер, проходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад называется материнским, возникающее ядро – дочерним. N=N0e-λtзакон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.

λ-постоянная для данного радиоактивного вещества величина, наз.постоянной радиоактивного распада.

Единица активности в СИ – беккерель(Бк):1 Бк-активость нуклида, при которой за 1 с происходит один акт распада. До сих пор единица применяется внесистемная единица активности нуклида в радиоактивном источнике – кюри(Ки) 1КИ=3,7·1010Бк

Билет 5.

1.Корпускулярно-волновой дуализм материи. Гипотеза де Бройля. Опыты по дифракции микрочастиц.

Де Бройль выдвинул теорию о корп.-волн.дуализме материи, т.е. не только фотоны, но и электроны и любые другие частица материи наряду с корпускулярными обладают также волновыми свойствами. Каждые микрообъект связывают корпуск.характеристики –энергия Е и импульс р, а также волновые – частота ν и длина волны λ. Е=hν,p=h/λ. Т.о. любой частице обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемо по формуле де Бройля λ=h/p. Можно добавить то, что на частице вещества переносится связь между полной энергией частицы ε и частотой ν волн де Бройля:ε=hν , h-постоянная Планка=6,625·10-34 Дж·с

Волна де Бройля – это волна, связанная с равномерным и прямолинейным движением частицы.

=Acos(t-kx) уравнения

(x,t)=Aexp(-(t-kx))  волны.

E=h, p=hk, =E/h, k=p/h. (x,t)=Aexp(-i/h(Et-px)) – плоская волна де Бройля. Фазовая и групповая скорости волн де Бройля. Фазовая скорость – скорость распространения фазы . Et-px=const, Edt-pdx=0, <>=dx/dt=E/p= =mc2/m - средняя скорость волны. ф=c2/, гр=d/dk, E=h, p=hk, E2-p2c2=m20c4; E=c(p2+m20c4). гр=d/dk=dE/dp= c2p/(2(p2+m20c4))=pc2/c(p2+m20c4)=pc2/mc2=p/m=m/m=. грф=c2. Дифракция микрочастиц. По идее де Бройля движение электрона или какой другой частицы связано с волновым процессом. =2h/p=2h/m (1); =E/h. Гипотеза была подтверждена экспериментально в 1927 г. исследование отражения электронов от монокристалла никеля, принадлежащего к кубической системе. Узкий пучок моноэнергетических электронов направлялся на пов-ть монокристалла. Отраженные электроны улавливались цилиндрическим электродом, присоединенным к гальванометру. Интенсивность оценивалась по силе тока. Варьировалась скорость электронов и угол . Рассеяние оказалось особенно интенсивным при угле, соответствующем отражению от атомных плоскостей, расстояние между которыми было известно из рентгенографических исследований. Вычисленная по формуле (1) длина волны примерно равна брэгговской длине волны, где 2dsin=n. Этот опыт подтвердил идею де Бройля. Томсон и Тартаковский независимо друг от друга получили дифракционную картину при прохождении электронного пучка через металлическую фольгу. Пучок электронов проходил через тонкую фольгу и попадал на фотопластину. Электрон при ударе о фотопластину оказывает на нее такое же действие как и фотон. Полученая таким же способом электрограмма золота сопоставлена с рентгенограммой алюминия. Сходство поразительно. Обнаружили, что дифф. Явления и у атомных и у молекулярных пучков, и длина волны =2h/p. Таким образом было доказано, что волновое сходство присуще отдельному электрону.

2.Электрон в периодическом поле кристалла. Образование энергетических зон. Энергетический спектр электронов в модели Кронинга-Пенни.

В основе зонной теории лежит так называемое адиабатическое приближение. Квантово-механическая система разделяется на тяжелые и легкие частицы- ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать. Что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки находятся неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер.

Далее используем приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими заменяется действием на него стационарного эл.поля, обладающего периодичностью кристалл.решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Пока атомы изолированы, т.е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней. (см.рис). По мере сжатия нашей модели до кристал.решетки, т.е. когда расстояния между атомами станут равными межатомным, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются, образуется зонный энергетический спектр.

Образование зонного энергетического спектра в кристалле является квантово-механическим дефектом и вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т.е. перемещаться без изменения потенциальной энергии (туннельный эффект).

Энергия внешних может принимать значения в пределах закрашенных областей (см.рис), называемых разрешенными энергетическими зонами. Разрешенные энергетические зоны разделяются зонами запрещенных значений энергии, называемые запрещенными энергетическими зонами.

Билет 6.

1.Условия возможности одновременного измерения разных величин. Соотношение неопределенностей Гейзенберга.

Гейзенберг предположил, что невозможно определить точно положение и импульс. Неопределенность положения х и рх удовлетворяют соотношению

Δx·px≥ħ/2

Δy·py≥ħ/2

Δz·pz≥ħ/2 Обозначив канонически сопряженные величины буквами А и В получим ΔА·ΔВ≥ħ/2. Производные неопределенностей значений двух сопряженных переменных не может быть по порядку величина меньше постоянной Планка ħ. Энергия и время тоже канонически сопряженные величины ΔЕ·Δt.≥ħ

2. Примесная проводимость полупроводников. Концентрация основных и неосновных носителей в полупроводнике p-типа. Уровень Ферми примесного полупроводника p-типа.

Проводимость, обусловленная примесями, называется примесной, а сами полупроводники – примесными. В полупроводниках с примесью, валентность которой на единицу меньше валентности основных атомов, носителями тока являются дырки; возникает дырочная проводимость (проводимость p-типа). Примеси, захватывающие электроны из валентной зоны полупроводника, называются акцепторами, а энергетические уровни этих примесей – акцепторными.

Уровень Ферми при 0К располагается посередине между потолком валентной зоны и акцепторным уровнем.

Проводимость примесного полупроводника определяется концентрацией носителей и их подвижностью. С изменением температуры подвижность носителей меняется по сравнительно слабому степенному закону, а концентрация носителей – по очень сильному экспоненциальному закону, поэтому проводимость примесных полупроводников от температуры определяется в основном температурной зависимостью концентрации носителей тока в нем.

Билет 7

1.Представление физических величин операторами. Собственные функции и собственные значения операторов, и их связь с результатами измерений.

А) Оператор координаты. Действие сводится к умножению волновой функции на эту координату: x^=x, y^=y, z^=z или x^=x… б) Оператор проекций импульса. Выражаются с помощью операторов дифференцирования по соответствующим координатам: P^x=(h/i)(/x), P^y=(h/i)(/y), P^z=(h/i)(/z),­­­­­­p^={ P^x, P^y, P^z}. В) Оператор момента импульса:L=rp, Lx=ypz-zpy; Ly=zpy-xpz; Lz=xpy-ypx; L^x=y^p^z-z^p^y=(h/i)(y/x-z/y). Г) Оператор кинетической энергии. Определим T, пользуясь формулой Т=p2/2m, T^=p^2/2m=-h2/2m. Вычисление средних значений: L^=L,<L>=*L^dV, (r)=Aexp(-r/a)

2. Принцип работы лазера. Особенности лазерного излучения. Основные типы лазеров, их применение.

Лазер – устройство, при прохождении через которое электромагнитные волны усиливаются за счет вынужденного излучения. Лазер – оптический квантовый генератор. Лазер имеет 3 основных компонента: 1) активная среда, 2) система накачки, 3) оптический резонатор. 1-й лазер был рубиновый, активная среда – рубин Al2O3. Для оптической накачки использовалась газоразрядная лампа. В кристалле Al2O3 некоторые атомы Al замещены на Cr3+. При облучении рубина цветом атом хрома переходит с уровня 1 на уровень 3, затем происходят переходы либо 31 (незначительно), либо 32. Переход 21 запрещен, поэтому атомы хрома накапливаются на уровне 2, возникает среда с инверсной населенностью. Фотон случайно родившийся при спонтанных переходах может порождать в активной среде множество вынужденных переходов 21, в результате возникает целая лавина вторичных фотонов, зарождается лазерная генерация. Для выделения направления лазерной генерации используется оптический резонатор. В простейшем случае – пара обращенных друг к другу зеркал на общей оптической оси, между которыми помещается активная среда. Фотоны, которые движутся под углом к оси кристалла выходят из активной среды, а фотоны, которые движутся параллельно оси вызывают вынужденное излучение. Многократно усиленный поток выходит через полупрозрачное зеркало, создавая пучок огромной яркости. Типы лазеров: 1) твердотельные, 2) газовые (гелий-неоновые), 3) полупроводниковые, 4) жидкостные. Применение: обработка, резание, скоростное и точное обнаружение дефектов, в измерительной технике, голография.

Билет 8

1.Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.

Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция U=U(x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. Уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем e-iωt=e-i(E/ħ)t, так что Ψ(x,y,z,t)=ψ(x,y,z)e-i(E/ħ)t, где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя это выражение в уравнение Шредингера((–ħ2/2m)ΔΨ+U(x,y,z,t)Ψ=iħ(∂Ψ/∂t), где ħ=h/(2π), m –масса частицы, i-мнимая единица, U-потенциальная функция частицы в силовом поле, в котором она движется

Δ-оператор Лапласа(ΔΨ=∂2Ψ/∂x2+∂2Ψ/∂y2+∂2Ψ/∂z2), Ψ(x,y,z,t)-искомая волновая функция частицы) получим:

разделив на общий множитель e-i(E/ħ)t и преобразовав придем к уравнению, определяющему функцию ψ

Δψ+(2m/ħ2)(E-U)ψ=0-уравнение Шредингера для стационарных состояний. Это уравнение имеет бесчисленное количество решений, из которых посредством наложения граничных условий отбираются решения, имеющие физич.смысл. Условия: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Т.о. реальный физич.смысл имеют только такие решения, которые выражаются регулярными функциями ψ .

2. Фотопроводимость полупроводников.

Фотопроводимость полупроводников – увеличение электропроводности полупроводников под действием электромагнитного излучения – может быть обусловлена свойствами, как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т.е. когда энергия фотона равна или больше ширины запрещенной зоны (hv≥ΔE), могут совершать перебросы электронов из валентной зоны в зону проводимости, что приведет к появлению добавочных (неравновесных) электронов(в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.

Если полупроводник содержит примеси, то фотопроводимость может возникать и при hv≤ΔE: для полупроводников с донорной примесью фотон должен обладать энергией hv≥ΔED, а для полупроводников с акцепторной примесью - hv≥ΔEА. При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n-типа, или из валентной зоны на акцепторные уровни в случае полупроводника p-типа. В результате возникнет примесная фотопроводимость, являющаяся чисто электронной для полупроводников n-типа и чисто дырочной для p-типа.

hv≥ΔE- для собственных полупроводников, hv≥ΔEП для примесных полупроводников. Из этого можно определить красную границу фотопроводимости, красная граница фотоэффекта-минимальная частота ν0 света( зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен:

λ0=ch/ΔE- для собственных полупроводников

λ0=ch/ΔEП – для примесных полупроводников.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5160
Авторов
на СтудИзбе
439
Средний доход
с одного платного файла
Обучение Подробнее