Главная » Все файлы » Просмотр файлов из архивов » Документы » И.А. Волкова, Т.В. Руденко - Формальные грамматики и языки. Элементы теории трансляции

И.А. Волкова, Т.В. Руденко - Формальные грамматики и языки. Элементы теории трансляции, страница 9

2019-05-09СтудИзба

Описание файла

Документ из архива "И.А. Волкова, Т.В. Руденко - Формальные грамматики и языки. Элементы теории трансляции", который расположен в категории "". Всё это находится в предмете "практикум (прикладное программное обеспечение и системы программирования)" из 4 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "И.А. Волкова, Т.В. Руденко - Формальные грамматики и языки. Элементы теории трансляции"

Текст 9 страницы из документа "И.А. Волкова, Т.В. Руденко - Формальные грамматики и языки. Элементы теории трансляции"

Оператор перехода в терминах ПОЛИЗа означает, что процесс интерпретации надо продолжить с того элемента ПОЛИЗа, который указан как операнд операции перехода.

Чтобы можно было ссылаться на элементы ПОЛИЗа, будем считать, что все они перенумерованы, начиная с 1 (допустим, занесены в последовательные элементы одномерного массива).

Пусть ПОЛИЗ оператора, помеченного меткой L, начинается с номера p, тогда оператор перехода goto L в ПОЛИЗе можно записать как

p !

где ! - операция выбора элемента ПОЛИЗа, номер которого равен p.

Немного сложнее окажется запись в ПОЛИЗе условных операторов и операторов цикла.

Введем вспомогательную операцию - условный переход "по лжи" с семантикой

if (not B) then goto L

Это двухместная операция в операндами B и L. Обозначим ее !F, тогда в ПОЛИЗе она будет записана как

B p !F

где p - номер элемента, с которого начинается ПОЛИЗ оператора, помеченного меткой L.

Семантика условного оператора

if B then S1 else S2

с использованием введенной операции может быть описана так:

if (not B) then goto L2; S1; goto L3; L2: S2; L3: ...

Тогда ПОЛИЗ условного оператора будет таким:

B p2 !F S1 p3 ! S2 ... ,

где pi - номер элемента, с которого начинается ПОЛИЗ оператора, помеченного меткой Li, i = 2,3.

Семантика оператора цикла while B do S может быть описана так:

L0: if (not B) then goto L1; S; goto L0; L1: ... .

Тогда ПОЛИЗ оператора цикла while будет таким:

B p1 !F S p0 ! ... ,

где pi - номер элемента, с которого начинается ПОЛИЗ оператора, помеченного меткой Li, i = 0,1.

Операторы ввода и вывода М-языка являются одноместными операциями. Пусть R - обозначение операции ввода, W - обозначение операции вывода.

Тогда оператор ввода read (I) в ПОЛИЗе будет записан как I R;

оператор вывода write (E) - как E W.

Постфиксная польская запись операторов обладает всеми свойствами, характерными для постфиксной польской записи выражений, поэтому алгоритм интерпретации выражений пригоден для интерпретации всей программы, записанной на ПОЛИЗе (нужно только расширить набор операций; кроме того, выполнение некоторых из них не будет давать результата, записываемого в стек).

Постфиксная польская запись может использоваться не только для интерпретации промежуточной программы, но и для генерации по ней объектной программы. Для этого в алгоритме интерпретации вместо выполнения операции нужно генерировать соответствующие команды объектной программы.

Синтаксически управляемый перевод

На практике синтаксический, семантический анализ и генерация внутреннего представления программы часто осуществляются одновременно.

Существует несколько способов построения промежуточной программы. Один из них, называемый синтаксически управляемым переводом, особенно прост и эффективен.

В основе синтаксически управляемого перевода лежит уже известная нам грамматика с действиями (см. раздел о контроле контекстных условий). Теперь, параллельно с анализом исходной цепочки лексем, будем выполнять действия по генерации внутреннего представления программы. Для этого дополним грамматику вызовами соответствующих процедур генерации.

Содержательный пример - генерация внутреннего представления программы для М-языка, приведен ниже, а здесь в качестве иллюстрации рассмотрим более простой пример.

Пусть есть грамматика, описывающая простейшее арифметическое выражение:

E  T {+T}

T  F {*F}

F  a | b | (E)

Тогда грамматика с действиями по переводу этого выражения в ПОЛИЗ будет такой:

E  T {+T <putchar('+')>}

T  F {*F <putchar('*')>}

F  a <putchar('a')> | b<putchar('b')> | (E)

Этот метод можно использовать для перевода цепочек одного языка в цепочки другого языка (что, собственно, мы и делали, занимаясь переводами в ПОЛИЗ цепочек лексем).

Например, с помощью грамматики с действиями выполним перевод цепочек языка

L1 = {0n1m | n,m>0}

в соответствующие цепочки языка

L2 = {ambn | n,m>0}:

Язык L1 можно описать грамматикой

S  0S | 1A

A  1A |

Вставим действия по переводу цепочек вида 0n1m в соответствующие цепочки вида ambn :

S  0S <putchar('b')> | 1 <putchar('a')> A

A  1 <putchar('a')> A |

Теперь при анализе цепочек языка L1 с помощью действий будут порождаться соответствующие цепочки языка L2.

Генератор внутреннего представления программы на М-языке

Каждый элемент в ПОЛИЗе - это лексема, т.е. пара вида (номер_класса, номер_в_классе). Нам придется расширить набор лексем:

  1. будем считать, что новые операции (!, !F, R, W) относятся к классу ограничителей, как и все другие операции модельного языка;

  2. для ссылок на номера элементов ПОЛИЗа введем лексемы класса 0, т.е. (0,p) - лексема, обозначающая p-ый элемент в ПОЛИЗе;

  3. для того, чтобы различать операнды-значения-переменных и операнды-адреса-переменных (например, в ПОЛИЗе оператора присваивания), операнды-значения будем обозначать лексемами класса 4, а для операндов-адресов введем лексемы класса 5.

Будем считать, что генерируемая программа размещается в массиве P, переменная free - номер первого свободного элемента в этом массиве:

#define MAXLEN_P 10000

struct lex

{int class;

int value;}

struct lex P [ MAXLEN_P];

int free = 0;

Для записи очередного элемента в массив P будем использовать функцию put_lex:

void put_lex (struct lex l)

{P[ free++] = l;}

Кроме того, введем модификацию этой функции - функцию put_lex5, которая записывает лексему в ПОЛИЗ, изменяя ее класс с 4-го на 5-й (с сохранением значения поля value):

void put_lex5 (struct lex l)

{ l.class = 5; P[ free++] = l;}

Пусть есть функция

struct lex make_op(char *op),

которая по символьному изображению операции op находит в таблице ограничителей соответствующую строку и формирует лексему вида ( 2, i ), где i - номер найденной строки.

Генерация внутреннего представления программы будет проходить во время синтаксического анализа параллельно с контролем контекстных условий, поэтому для генерации можно использовать информацию, "собранную" синтаксическим и семантическим анализаторами; например, при генерации ПОЛИЗа выражений можно воспользоваться содержимым стека, с которым работает семантический анализатор.

Кроме того, можно дополнить функции семантического анализа действиями по генерации:

void checkop_p (void)

{char *op; char *t1; char *t2; char *res;

t2 = spop(); op = spop(); t1 = spop();

res = gettype (op,t1,t2);

if (strcmp (res, "no"))

{spush (res);

put_lex (make_op (op));} /* дополнение! - операция

op заносится в ПОЛИЗ */

else ERROR();

}

Тогда грамматика, содержащая действия по контролю контекстных условий и переводу выражений модельного языка в ПОЛИЗ, будет такой:

E  E1 | E1 [ = | > | < ] < spush (TD [curr_lex.value] ) > E1< checkop_p() >

E1  T { [ + | - | or] < spush (TD [curr_lex.value] ) >T < checkop_p() >}

T  F { [ * | / | and] < spush (TD [curr_lex.value] ) >F < checkop_p() >}

F  I < checkid(); put_lex ( curr_lex ) > | N < spush("int"); put_lex (curr_lex) > |

[ true | false ] < spush ("bool"); put_lex (curr_lex) > |

not F < checknot(); put_lex (make_op ("not")) > | (E)

Действия, которыми нужно дополнить правило вывода оператора присваивания, также достаточно очевидны:

S  I < checkid(); put_lex5 (curr_lex) > :=

E < eqtype(); put_lex (make_op (":=")) >

При генерации ПОЛИЗа выражений и оператора присваивания элементы массива P заполнялись последовательно. Семантика условного оператора if E then S1 else S2 такова, что значения операндов для операций безусловного перехода и перехода "по лжи" в момент генерации операций еще неизвестны:

if (!E) goto l2; S1; goto l3; l2: S2; l3:...

Поэтому придется запоминать номера элементов в массиве P, соответствующих этим операндам, а затем, когда станут известны их значения, заполнять пропущенное.

Пусть есть функция

struct lex make_labl (int k),

которая формирует лексему-метку ПОЛИЗа вида (0,k).

Тогда грамматика, содержащая действия по контролю контекстных условий и переводу условного оператора модельного языка в ПОЛИЗ, будет такой:

S  if E < eqbool(); pl2 = free++; put_lex (make_op ("!F")) >

then S < pl3 = free++; put_lex (make_op ("!")); P[pl2] = make_labl (free) >

else S < P[pl3] = make_lable (free) >

Замечание: переменные pl2 и pl3 должны быть локализованы в процедуре S, иначе возникнет ошибка при обработке вложенных условных операторов.

Аналогично можно описать способ генерации ПОЛИЗа других операторов модельного языка.

Интерпретатор ПОЛИЗа для модельного языка

Польская инверсная запись была выбрана нами в качестве языка внутреннего представления программы, в частности, потому, что записанная таким образом программа может быть легко проинтерпретирована.

Идея алгоритма очень проста: просматриваем ПОЛИЗ слева направо; если встречаем операнд, то записываем его в стек; если встретили знак операции, то извлекаем из стека нужное количество операндов и выполняем операцию, результат (если он есть) заносим в стек и т.д.

Итак, программа на ПОЛИЗе записана в массиве P; пусть она состоит из N элементов-лексем. Каждая лексема - это структура

struct lex {int class; int value;},

возможные значения поля class:

  1. - лексемы-метки (номера элементов в ПОЛИЗе)

  2. - логические константы true либо false ( других лексем - служебных слов в ПОЛИЗе нет)

  3. - операции (других лексем-ограничителей в ПОЛИЗе нет)

  4. - целые константы

  5. - лексемы-идентификаторы ( во время интерпретации будет использовать-ся значение)

  6. - лексемы-идентификаторы ( во время интерпретации будет использовать-ся адрес).

Считаем, что к моменту интерпретации распределена память под константы и переменные, адреса занесены в поле address таблиц TID и TNUM, значения констант размещены в памяти.

В программе-интерпретаторе будем использовать некоторые переменные и функции, введенные нами ранее.

void interpreter(void) {

int *ip;

int i, j, arg;

for (i = 0; i<=N; i++)

{curr_lex = P[i];

switch (curr_lex.class) {

case 0: ipush (curr_lex.value); break;

/* метку ПОЛИЗ - в стек */

case 1: if (eq ("true")) ipush (1);

else ipush (0); break;

/* логическое значение - в стек */

case 2: if (eq ("+")) {ipush (ipop() + ipop()); break};

/* выполнили операцию сложения, результат - в стек*/

if (eq ("-"))

{arg = ipop(); ipush (ipop() - arg); break;}

/* аналогично для других двухместных арифметических
и логических операций */

if (eq ("not")) {ipush (!ipop()); break;};

if (eq ("!")) {j = ipop(); i = j-1; break;};

/* интерпретация будет продолжена с j-го элемента
ПОЛИЗа */

if (eq ("!F")) {j = ipop(); arg = ipop();

if (!arg) {i = j-1}; break;};

/* если значение arg ложно, то интерпретация будет
продолжена с j -го элемента ПОЛИЗа, иначе порядок
не изменится */

if (eq (":=")) {arg = ipop(); ip = (int*)ipop();

*ip = arg; break;};

if (eq ("R")) {ip = (*int) ipop();

scanf("%d", ip); break;};

/* "R" - обозначение операции ввода */

if (eq ("W")) {arg = ipop();

printf ("%d", arg); break;};

/* "W" - обозначение операции вывода */

case 3: ip = TNUM [curr_lex.value].address;

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее