Лекции, страница 3

2019-05-09СтудИзба

Описание файла

Документ из архива "Лекции", который расположен в категории "". Всё это находится в предмете "математический анализ" из 4 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "Лекции"

Текст 3 страницы из документа "Лекции"

Следствие. Пусть - односвязная область. не зависит в от формы пути интегрирования тогда и только тогда, когда в этой области выполняется тождество .

  1. Связь с вопросом о полном дифференциале

Если - дифференцируемая функция двух переменных, то . Выясним, при каких условиях на существует такая функция , что , т.е. . В предположении непрерывности смешанных производных: или . Докажем, что если - односвязная область, то верно и обратное.

Теорема 3. Если в односвязной области , то существует такая, что .

Доказательство. Возьмем произвольную точку и рассмотрим переменную точку и любую кривую , соединяющую с .

По следствию теоремы 2, зависит только от конечной точки и, значит, есть некоторая функция . Покажем, что - искомая функция, т.е. . Для этого рассмотрим точку и рассмотрим , где - отрезок прямой, соединяющей точки . На этом отрезке и . Применяя теорему о среднем, получаем (ввиду непрерывности ), что , где . Тогда . . Для доказательство аналогичное.

Замечание. Если векторное поле обладает свойством в односвязной области , то говорят, что - потенциальное поле и найденная функция такая, что , т.е. , называется потенциалом поля .

Следствие. В потенциальном поле работа вдоль любого замкнутого контура равна 0. Вообще, если соединяет , то работа вдоль равна . Т.е. работа равна разности потенциалов.

Примечание. Условие односвязности существенно.

Например, если область не содержит начала координат, то . Действительно,

, .

Т.о. условие выполнено во всей области (которая не содержит точки ).

С другой стороны, пусть содержит .

Рассмотрим - окружность радиуса , содержащуюся в . Параметризуем эту окружность: . Тогда . Это связано с тем, что область, в которой непрерывны многосвязная.

Поверхностные интегралы

  1. Двусторонние поверхности

Рассмотрим сначала поверхность , представляющую собой график функции (1), имеющей непрерывные частные производные для всех , где - область на плоскости.

У этой поверхности, очевидно, есть 2 стороны: верхняя и нижняя. Верхняя сторона может быть охарактеризована тем, что из двух возможных направлений нормали к этой поверхности в любой ее точке выбирается то, которое составляет с осью острый угол (нижней стороне, соответственно, отвечает тупой угол между нормалью и осью ).

Пусть - точка этой поверхности, т.е. .

Уравнение касательной плоскости к этой поверхности в точке имеет вид (2).

Напомним, что в общем уравнении плоскости числа представляют собой координаты перпендикулярного к этой плоскости вектора. Согласно (2), - координаты некоторого нормального вектора к поверхности в точке . Этот вектор, вообще говоря, не единичный. Умножая его на один из нормирующих множителей мы получим 2 единичных вектора (3) и .

Известно, что координаты единичного вектора (3) – это косинусы углов, составляемых этим вектором с осями соответственно, т.е. . Т.к. , то . Кроме того, заметим, что .

Отметим, что , поэтому верхней стороне соответствует вектор .

Пусть - замкнутый контур, лежащий на поверхности и не пересекающей ее край. Выберем в произвольной точке этого контура одно из двух направлений нормали. Пусть при обходе этого контура нормаль меняется непрерывно. Тогда в исходную точку мы вернемся в исходным направлением нормали.

Описанное выше свойство поверхности (1) будем считать определением двусторонней поверхности (в общем случае, а не только для поверхностей вида (1)).

Бывают поверхности, не являющиеся двусторонними. Простейший пример – лист Мебиуса. Он получается так: рассмотрим прямоугольник и линюю , соединяющую середины его сторон.

Склеим точку с точкой , .

Если обходить контур , то при возвращении в исходную точку направление нормали изменится на противоположное. Это доказывает одностороннесть листа Мебиуса.

В дальнейшем мы рассматриваем только двусторонние поверхности.

Обычно удобно задавать поверхности параметрическими уравнениями (4), где ( - некоторая плоская область).

При этом мы считаем, что уравнения (4) задают взаимно-однозначное соответствие между точками поверхности и точками .

Кроме того, мы считаем, что функции непрерывны в (при выполнении этих условий мы будем говорить: - непрерывно дифференцируемые функции от ) и что в любой точке из ранг матрицы равен 2. Это означает, что в любой точке хотя бы один из миноров этой матрицы не равен 0. Пусть, например, . Тогда по теореме о системе неявных функций (см. 2-й семестр) в некоторой окрестности уравнения можно решить и получить выражение через , т.е. . Тогда третье уравнение в окрестности рассматриваемой точки даст , т.е. мы получаем явное уравнение вида (1).

(Если , то имеем, по аналогии, , а если , то ).

Можно доказать (хотя мы этого не будем делать), что при сделанных выше предположениях уравнения (4) задают двустороннюю поверхность.

Обозначим вектор . Рассмотрим произвольную точку . Зафиксируем сначала и рассмотрим - кривую на поверхности. Тогда - вектор касательной к этой кривой. Аналогично, - вектор касательной к кривой .

Нормаль к поверхности является нормалью к касательной плоскости и перпендикулярна и . Условие означает, что и не параллельны. Поэтому в качестве нормального вектора можно взять (векторное произведение) или . Тогда единичные векторы нормали равны , при этом выбору верхней нормали соответствует выбор того же знака, что и знак числа , перед корнем (поскольку тогда ).

Выбор стороны поверхности задает ориентацию контуров, которые на ней лежат. Считаем, что контур обходится в положительном направлении, если “обходчик”, держащий “голову” в нормальном к поверхности положении видит ограничиваемую контугом часть поверхности слева от себя.

Отрицательное направление противоположно положительному.

Обратно, выбор положительного направления обхода контуров на поверхности задает выбор стороны этой поверхности.

Если поверхность состоит из нескольких частей, каждая из которых – двусторонняя поверхность, то можно соединить эти части в одну двустороннюю поверхность, согласовав ориентацию общих границ.

Например, в случае двух частей ориентация будет согласованной, если положительное направление движения по общей границе происходит от на поверхности и от на .

Это замечание позволяет говорить о внешней стороне замкнутой поверхности.

Например, для сферы:

- верхняя полусфера, внешняя нормаль составляет острый угол с осью .

- нижняя полусфера. Внешняя нормаль составляет тупой угол с осью .

и вместе составляют внешнюю сторону сферы. При этом положетельные направления обхода “экватора” противоположны друг другу на и на .

  1. Площадь двусторонней поверхности

Сначала определим понятие площади поверхности , заданной уравнением , где - непрерывная функция, обладающая непрерывными производными в некоторой квадрируемой области .

Предположим, что мы рассматриваем разбиение этой поверхности на части непрерывными кривыми. Под диаметром множества понимается точная верхняя грань расстояний между точками этого множества. Диаметр разбиения - это наибольший из диаметров получившихся частей.Обозначают его .

В каждой полученной части поверхности выберем точку и рассмотрим касательную плоскость к поверхности в этой точке. Пересечения касательных плоскостей ограничат многоугольники, которые образуют “панцирь” на поверхности. Этот “панцирь” состоит из плоских многоугольников и, следовательно, имеет площадь, равную сумме площадей его многоугольников.

Если при стремлении к 0 диаметра разбиения площади “панцирей” имеют конечный предел, то он и называется площадью поверхности. Это определение позволяет легко найти формулу для вычисления площади поверхности. Рассмотрим плоский многоугольник, нормаль к которому имеет направляющие косинусы . Можем считать, что .

Без ограничения общности, достаточно рассматривать прямоугольник, причем, для простоты, считаем, что его проекция на плоскость есть прямоугольник со сторонами , а сам он имеет стороны .

Тогда и ( ). В общем случае .

Если нормали выбирались в точках , то пусть - их направляющие косинусы. Согласно сказанному выше, площадь “панциря” есть . Эта сумма является интегральной суммой для двойного интеграла . Как установлено в §1, , поэтому .

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее