Главная » Все файлы » Просмотр файлов из архивов » Документы » М.В. Зайцев - Лекции по линалу

М.В. Зайцев - Лекции по линалу, страница 8

2019-04-28СтудИзба

Описание файла

Документ из архива "М.В. Зайцев - Лекции по линалу", который расположен в категории "". Всё это находится в предмете "линейная алгебра и аналитическая геометрия" из 2 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Онлайн просмотр документа "М.В. Зайцев - Лекции по линалу"

Текст 8 страницы из документа "М.В. Зайцев - Лекции по линалу"

2. Координатная запись

Пусть - система координат в и , .

Тогда (2)

3. Центральная точка

Пусть , , . Пусть также - полярная к билинейная симметрическая форма на . Тогда

,

т.е. .

Опр. Точку называют центром (или центральной точкой) , если

Другими словами (3), где (т.е. ).

В координатной записи центральной точки это означает, что если начало координат является центральной точкой квадрики, то линейная часть в формуле (2) отсутствует.

Опр. - множество всех центральных точек .



4. Нахождение центра

Пусть , . Тогда , (4)

Т.е. (4) – критерий центральной точки .

Теорема. Множество центральных точек квадратичной функции , заданной формулой (2) в системе координат , состоит из точек , где - решение системы

уравнений (4). Если - одна из центральных точек , то , где - гиперплоскость в . В частности - аффинное подпространство в .

Уже, показано, что задаётся С.Л.У.(4). Если она совместна, то множество её решений – аффинная плоскость в с направляющим пространством , заданным системой , . Но это система уравнений , т.е. .



5. Приведение квадратичной функции к каноническому виду.

Теорема. Пусть - квадратичная функция ранга на -мерном аффинном пространстве над K. Если , то и в некоторой системе координат приводится к виду

, (5) где .

Если имеет непустой , то существует система координат с началом в центральной точке , в которой приводится к виду:

(6)

При этом и значение в любой центральной точке равно .

Выберем в канонический базис для . Для произвольной точки в системе координат функция имеет вид (для ): , причём , т.к. .

Замена координат вида , ; , т.е. перенос начала координат в соответствующую точку к виду

.

Если все , то имеет вид (6)

Пусть . Возьмём и положим

, , ,..., , ,…, .

Тогда в новых координатах будет иметь вид (5).

11.04.05



ТЕНЗОРЫ

1. Основные понятия.

Пусть - произвольное поле, - векторное пространство над , . Обозначим через дуальное пространство, т.е. пространство линейных функций . - неотрицательные целые числа. Для каждой такой пары определим следующее понятие:

Определение: Тензором на типа называют любое полилинейное отображение

.

Т.е. - функция от аргументов, первые из которых из пространства , следующие - из пространства , линейная по каждому из аргументов со значениями в поле .

Определение: Число называют валентностью (реже рангом) . Сам называют смешанным тензором раз ковариантным, раз контрвариантным.



2. Интерпретация тензоров малых рангов.

Тензор типа - это любой скаляр из поля .

Тензор типа - это линейная форма, т.е. любой элемент из .

Тензор типа - это линейный функционал . Т.е. любой элемент из . Отождествляя канонически и , мы говорим, что контрвариантный тензор типа есть вектор из . Если , то . Мы будем использовать запись и для значения на , и для значения на .

Смешанный тензор типа .

Пусть - фиксированный вектор из пространства . Тогда - линейный функционал на , т.е. элемент . Т.е. - вектор из . Обозначим этот вектор . Тогда выполняется соотношение (1) где - некоторое отображение.

Т.к. , то .

Поскольку - любой элемент , то это равенство влечёт:

. Т.е. .

Обратно: если - произвольный оператор, формула (1) сопоставляет ему тензор типа .

Таким образом, мы построили биекцию между тензорами типа и линейными операторами из .



3. Произведение тензоров.

Пусть сначала , - два произвольных полилинейных отображения, где - различные векторные пространства (не обязательно совпадают) над .

Определение: Тензорное произведение и , где .

Ясно, что - полилинейная функция по каждому аргументу. Если - три полилинейных функции, то , т.е. тензорное произведение ассоциативно. Но, вообще говоря, оно не является коммутативным, т.е. для произвольных функций (об этом даже не всегда корректно говорить).

Пусть теперь - тензор типа , - тензор типа . Тогда - тензор типа , определённый формулой: (2)

Определение: Тензор, заданный формулой (2) называется тензорным произведением тензоров , .



4. Координаты тензоров.

Пусть - базис . Рассмотрим в сопряжённом пространстве дуальный базис . Т.е. .

Обозначим через пространство тензоров типа на . Тогда любое произведение

(3)

является тензором типа , т.е. полилинейной функцией: . Эти тензоры линейно независимы по следующей причине: (4)

Теорема. Тензоры вида (3) образуют базис векторного пространства .

То, что - пространство – очевидно, если определить сложение обычным образом:

. Умножение на скаляр – тоже обычное. Линейная независимость (3) уже показана. Осталось проверить, что любой тензор линейно выражается через систему (3). Пусть . Обозначим (5). Тогда из формулы (4) следует, что если взять тензор , то , т.е. значения и на всех возможных наборах базисных векторов совпадают. Т.к. и - полилинейные функции, то , и (3) – базис пространства .

Определение: Принято говорить, что из формулы (5) – координаты тензора в базисе .

Следствие: .

18 апреля 2005



5. Изменение координат тензора при замене базиса

Пусть и - два базиса в пространстве . Обозначим через матрицу перехода от базиса к базису . Элементы матрицы индексируем так: , где - элемент i-ой строки и j-ого столбца. Тогда имеем:

и .

Это стандартное обозначение: чтобы суммирование велось по индексу, встречающемуся сверху и снизу. В некоторых книгах знак суммы опускают и пишут: . Но мы так делать не будем: все суммы будем прописывать полностью.

Пусть теперь - дуальный базис к базису , а - дуальный к базису в пространстве . Обозначим через матрицу перехода от базиса к базису в пространстве . Тогда . Чтобы следовать правилу “разных уровней” ( т.е. чтобы индекс суммирования появился сверху и снизу), обозначим через - транспонированная матрица . Тогда . Эту формулу мы запишем следующим образом. Поскольку , то , т.е. . Введём вспомогательную матрицу . Тогда , т.е. . Т .к. базисы дуальны . Т.е. и . Отсюда .



Пусть теперь и - его координаты в , а - координаты в базисе . Тогда

, .

(6)

Выразим (аналогично выражаем ) и подставим в формулу (6). Получим

. Здесь мы использовали, что и аналогичные выражения для . Т.к. элементы образуют базис пространства , то нами доказана следующая

Теорема. При переходе от базиса к базису в координаты тензора типа изменяются по правилу: , где - матрица перехода от базиса к базису пространства , а .



6. Свёртки тензоров.

Пусть - тензор типа . Зафиксируем числа и , и определим свёртку по r-ому ковариантному индексу и s-ому контрвариантному индексу следующим образом. Т.к. , где , а , то можно определить сумму , где - базис , а - дуальный базис .

Определение. называется свёрткой тензора по r-ому ковариантному индексу и s-ому контрвариантному индексу.

Ясно, что - полилинейная функция от оставшихся аргументов, т.е. . Докажем, что не зависит от выбора базиса пространства .

Доказательство: пусть - другой базис пространства , а - матрица перехода от базиса к базису . Тогда . Напомним, что для дуальных базисов имеем: , где (смотри доказательство предыдущей теоремы). Зафиксируем для удобства все остальные переменные у кроме и , обозначим . Тогда . Получаем: .

Заметим, что - произведение i-ой строки матрицы на j-ый столбей матрицы . Т.к. эта сумма равна , .



23.04.2005







Связь координат тензора T и его свертки .

Теорема. Свертка по s-тому ковариантному и r-тому контравариантному индексам тензора T типа (p,q) является тензором типа (p-1,q-1) с координатами

То, что свертка – тензор типа - проверено. Пусть , где . Как и раньше, обозначим через . Обозначим . Тогда

.

Знак «домик» означает пропуск соотв. индекса (т.е. ). Соотношение (1) и есть утверждение теоремы.

Пример. Тензор типа (1,1) - это матрица . Его свертка равна - след матрицы A.



Действие симметрической группы на тензорах.

Пусть T – тензор типа , т.е. , и - группа подстановок множества . Для любой определим отображение . Ясно, что - тензор типа . Аналогично можно определить действие на .

Опр. Тензор T типа называется симметричным, если .

Ясно, что - линейный оператор на .

Опр. Симметризацией тензоров из называется отображение .

Пример. Возьмем подстановку . Тогда

. .

Обозначим через подпространство всех симметричных тензоров из .

Теорема. Действие симметризации на обладает следующими свойствами:

1) и 2) .

(а) Если T – симметричный тензор, то .

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5288
Авторов
на СтудИзбе
417
Средний доход
с одного платного файла
Обучение Подробнее