sborka (Задача обработки решеток), страница 5

2016-08-01СтудИзба

Описание файла

Документ из архива "Задача обработки решеток", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "sborka"

Текст 5 страницы из документа "sborka"

Обычно приходится иметь дело с диэлектрическими образца­ми более сложной формы, в частности с диэлектрическим диском. В такой ситуации получить аналитическое выражение для ядра не удается, однако это не является препятствием для нахождения решения задачи.

Действительно, ядро уравнения для резонатора с шаром (9.39) — это сумма ядра для пустого резонатора и дополнитель­ного члена, представляющего собой поле, рассеянное шаром.

Запишем уравнение для резонатора с диском в аналогичном виде, поскольку физическая картина явлении одна и та же:

(9.45)

Здесь - ядро пустого резонатора; Т — ядро, связанное с рас­сеянием на диэлектрическом образце. Обсудим, что в сущности делается при решении уравнения (9.39) методом Галеркина. Для определенности будем считать, что в качестве базисных и весо­вых (см. приложение 2) взяты собственные функции резонатора без шара, которые обозначим и будем считать ортонормированными.

С первым слагаемым ядра все ясно, базисные функции являются его собственными, и действие интегрального оператора с та­ким ядром эквивалентно умножению на постоянную, являющую­ся собственным значением пустого резонатора:

(9.46)

Интегральный оператор со вторым слагаемым ядра представ­ляет собой магнитное поле тока на зеркалах, рассеянное шаром. Плотность тока задается в виде , а рассеянное поле рассчи­тывается на поверхности зеркала. При решении (9.39) расчет рас­сеянного шаром поля проводится аналитически. Однако ту же процедуру можно произвести численно, и тогда ограничения на формулу диэлектрического образца в значительной степени сни­маются.

Для расчета рассеянного поля будем применять интегральное уравнение (3.85). Диэлектрический образец может быть произ­вольным телом вращения, в частности диском.

После этих общих соображений рассмотрим процедуру реше­ния (9.45) последовательно. Функция U(x) ищется в виде

(9.47)

В соответствии с методом Галеркина (см. приложение 2) подставляем (9.47) в (9.45), затем умножаем на и повторно ин­тегрируем по образующей зеркала. С учетом ортонормированности базисных функций имеет однородную СЛАУ

(9.48)

где - собственные числа уравнения невозмущенного резонато­ра [см. (9.46)].

Элементы матрицы СЛАУ выражаются интегралами

(9.49)

Последнюю формулу надо понимать как символическую. Она эквивалентна процедуре расчета рассеянного поля, описанной вы­ше. Остановимся на ней подробнее.

Вначале необходимо найти поле на поверхности диэлектричес­кого тела, созданное током вида на зеркалах. Это можно было бы сделать с помощью (3.8), (3.9), однако есть более простой путь, если ограничиться рассмотрением тел небольших, на по­рядок меньших диаметра зеркал. Тогда можно воспользоваться приближенным выражением для поля в резонаторе, соответствую­щим приближенным функциям токов на зеркалах. На рис. 9.6 представлены графики распределения токов на зеркалах, соответ­ствующие низшему типу колебаний и колебанию, имеюще­му вариацию по радиусу . Резонатор конфокальный с па­раметром . Вблизи оси плотность тока, описываемая гиперсфероидальными функциями (кривые 1), практически не отли­чаются от экспоненциальной функции, умноженной на полиномы Лагерра (кривые 2), т. е. от гауссова пучка [68]. Радиальное распределение отличается только масштабом по радиусу.

Таким образом, будем описывать поле в резонаторе вблизи его центра приближенным .выражением в виде гауссова пучка

(9.50)

где

;

R - радиус кривизны волнового фронта; W радиус «освещен­ного пятна» в пучке. Последняя величина определяется как радиус, на

Рис. 9.6. Сравнение точных и приближенных кривых для гиперсфероидальных функций:

1 - точные, 2 - приближенные кривые

котором интенсивность пучка спадает в е раз по отно­шению к центру пучка. Характерной величиной для каждого пуч­ка является наименьший радиус «пятна» . Применительно к резонатору - это радиус «пятна» в центре, который связан с длиной резонатора 1:

(9.51)

1 Как и ранее, все длины предполагаются умноженными на волновое число, которое здесь соответствует действительной части собственной частоты невозмущенного резонатора.

Величины W и R медленно меняются вдоль резонатора:

(9.52)

(9.53)

В центре резонатора Естественно в резо­наторе существуют не один, а два встречных гауссовых пучка, и вблизи центра поле основной моды в приближении гауссова пуч­ка имеет вид

(9.54)

На зеркале для конфокальной геометрии резонатора в соответствии с (9.51)—(9.53) , и распределение тока имеет вид1

(9.55);

Для следующего колебания «1, 0, поле в центре резонатора представляется формулой

(9.56)

и на зеркалах

(9.57)

Таким образом, поле в резонаторе без образца, соответствующее различным модам, в приближении гауссова пучка нетрудно запи­сать. Оно играет роль первичного поля для задачи возбуждения диэлектрического образца.

Вычисляем эквивалентные токи на поверхности диэлектрика в предположении, что основная поляризация поля . В обозначе­ниях § 3.3 имеем:

1 Напомним, что в открытых резонаторах с круглыми зеркалами принята следующая индексация мод : первый индекс - число вариаций по R, второй - число вариаций по , а третий - число вариаций по

(9.58)

Теперь необходимо возвратиться к азимутальным гармоникам вида , поскольку ЭВМ — программы для диэлектричес­ких тел вращения сделаны применительно к ним. Первичные то­ки представляют собой сумму первой и минус первой гармоник. Каждую из них можно выделить, используя формулу Эйлера. В результате решения задачи возбуждения диэлектрического тела, а конкретно диска, получаем значения эквивалентных токов в дискретных и достаточно часто расположенных точках образую­щей. Зависимость от этих токов известная. Если объединить то­ки первой и минус первой гармоник, она будет такой же, как и у первичных токов (9.58).

Следующий этап — вычисление рассеянных диском полей на зеркалах. Для этого используются формулы (3.8), (3.9). Выра жения для элементов тензорной функции Грина следует упрос тить, как и при выводе уравнений (9.5)—(9.8), т. е. положить , а для функции использовать асимптотичес­кую формулу (9.22). Последняя содержит множитель, учитываю­щий набег фазы на половине размера резонатора (расстояние от образца до одного из зеркал). Такой же набег фаз имеется в первичном для диэлектрического образца поле. Этот сдвиг при­сутствует также в (9.56) и (9.57). Все это позволяет вынести за знак интеграла множитель , такой же, как и из основного ядра. Этот множитель, как и ранее, дает основную час­тотную зависимость. Ядра без него от частоты зависят слабо, и в них частота полагается равной действительной части собственной частоты пустого генератора.

Теперь уже можно вычислить элементы матрицы (9.48). Для определения элемента берется рассеянное поле, возбужденное нулевой модой пустого резонатора, т. е. , затем оно в соот­ветствии с (9.49) домножается на (9.55) и интегрируется. При этом необходимо помнить, что базисные функции предполагались нормированными. Поэтому функцию (9.55) необходимо предвари­тельно пронормировать. В силу осевой симметрии системы по­верхностный интеграл (9.49) можно представить в координатах вращения. Интеграл по берется аналитическим, а по радиаль­ной координате - численно. Остальные элементы отыски­ваются точно так же.

Далее решается задача на собственные значения, а затем с по­мощью формул (9.40) и (9.41) находятся изменения добротности и сдвиг частоты.

2.2 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ОТКРЫТОГО РЕЗОНАТОРА С ДИЭЛЕКТРИЧЕСКИМ ДИСКОМ, НЕСООСНЫМ С ЗЕРКАЛАМИ [72]

При проведении измерений параметров диэлект­рика образец в виде диска часто удобнее расположить несоосно с зеркалами и, в частности, так, чтобы оси резонатора и диска были перпендикулярны (рис. 9.7). Такое расположение диска нарушает осевую симметрию задачи. В общем случае отход от осевой симметрии очень -сильно усложняет решение, поскольку теря­ется основное преимущество систем враще­ния — независимость отдельных азимуталь­ных гармоник полей.

Рис. 9.7. Геометрия открытого резонатора с несоосными зеркалом и диском

Однако в рассматриваемой задаче анализа полей в высокодобротном открытом резонаторе несоосность вносит технические, но не принципиальные затруднения. Действительно, для измерений параметров диэлектрический образец берется небольшим по срав­нению с размерами резонатора. Поэтому его внесение в резона­тор не приводит к переходу к другой моде, а лишь несколько ме­няет добротность и резонансную частоту той моды, которая су­ществовала без диэлектрика. Таким образом, за счет фильтрую­щих свойств резонатора новых азимутальных гармоник не появ­ляется и основная трудность в несоосных системах вращения сни­мается. Надо лишь следить за тем, чтобы на других азимуталь­ных гармониках у пустого резонатора не было поблизости от час­тоты рабочей моды других высокодобротных мод.

Метод решения задачи остается в общих чертах тем же, что и в предыдущем параграфе, но с некоторыми усложнениями. Главное из них — это необходимость введения двух систем ко­ординат вращения: одной, связанной с зеркалами резонатора (ось вращения у}, и второй, связанной с диэлектрическим телом (ось вращения z) (рис. 9.7). Поле, рассеянное диском, не обладает те­перь осевой симметрией по отношению к зеркалам, что сущест­венно затрудняет интегрирование по поверхности зеркал, необхо­димое при применении метода Галеркина.

Рассмотрим теперь этапы решения задачи. Как и ранее, в ме­тоде Галеркина в качестве базиса используются собственные функции пустого резонатора, а точнее, их приближенное пред­ставление в виде гауссова пучка.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее