sborka (Задача обработки решеток), страница 3

2016-08-01СтудИзба

Описание файла

Документ из архива "Задача обработки решеток", который расположен в категории "". Всё это находится в предмете "радиофизика и электроника" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "радиоэлектроника" в общих файлах.

Онлайн просмотр документа "sborka"

Текст 3 страницы из документа "sborka"

Таким образом, положительные полиномы естественно имеют место в задаче продолжаемости, поскольку они определяют гиперплоскости основы множества Е продолжаемых векторов корреляции. На языке функционального анализа теорема о продолжимости, которая является видом леммы Фаркаша [11], просто констатирует, что Е и Р - положительные сопряженные конусы.[10]. Эта теорема имеет важное следствие относительно перемещения простой характеристики Р, в терминах положительности, на характеристику Е. Хотя введение спектральной основы в рассматриваемую задачу является новым, по существу та же характеристика продолжимости была первоначально использована Кальдероном и Пепинским [l2], и Рудиным [l3].

Рисунок 4 демонстрирует зависимость Е от спектральной основы. Существуют две точки зрения на эту зависимость. Прямая точка зрения отмечает тот факт, что Е является выпуклым конусом, генерированным А; поскольку К уменьшилось, А сжалось и Е теперь меньше, чем на рис.3. Косвенная точка зрения включает ограничения; множество К ограничивает множество Р посредством условия о положительности, а множество Р ограничивает множество P посредством теоремы продолжимости. Итак, когда К сжимается, Р растет, и Е сжимается.

Для случая временной последовательности теорема о продолжимости сводится к тесту положительной определенности теплицевой матрицы, образованной из корреляционных выборок. Следовательно, о продолжимости можно говорить как об общем аналоге положительной определенности.

Пример 3.1 : Случай временной последовательности; D=1, .B этом случае, проблема продолжимости сводится к проблеме тригонометрических моментов [9]. Хотя это и не справедливо в общем случае, для случая временной последовательности, как следует из фундаментальной теоремы алгебры, положительный полином может быть факторизован в виде квадрата модуля М-той степени тригонометрического полинома

.

Внутреннее произведение становится теплицевой формой в коэффициентах

Таким образом, требование того, чтобы внутреннее произведение было положительным для всех полиномов сводится к требованию положительной определенности теплицевой формы, соответствующей корреляционным измерениям.

1.3 Граница и внутренняя часть

Необходимо будет делать различие между границей и внутренней частью множеств Е и Р. Рассмотрение метода Писаренко в разделе 17, к примеру, включает векторы на границах Е и Р. Векторы во внутренней части Е и P являются важными тогда, когда затрагиваются пункции спектральной плотности, как например, в методе спектральной опенки по способу максимальной энтропии [l4].

Граница замкнутого множества состоит из тех членов, которые находятся произвольно близко к некоторому вектору снаружи множества. Внутренняя часть замкнутого множества состоит из тех членов, которые не находятся на границе. .

Граница и внутренняя часть конечного измеримого множества не зависит от частного выбора нормы вектора [15]. Кроме того, поскольку Р и Е являются выпуклыми множествами, особенно просто охарактеризовать их внутренний части и границы.

Граница Р, обозначаемая , состоит из тех положительных полиномов, которые равны нулю для некоторых . Внутренняя часть Р, обозначаемая , состоит из тех полиномов, которые строго положительны на К.

Положительные полиномы могут быть использованы для определения границы и внутренней части Е. Граница Е, обозначаемая , состоит из тех продолжимых корреляционных векторов, которые превращают в нуль внутреннее произведение с некоторым ненулевым положительным полиномом. Внутренняя часть Е, обозначаемая , состоит из тех корреляционных векторов, которые делают строго положительными внутренние произведения с каждым ненулевым положительным полиномом.

1.3.1 Функции спектральной плотности мощности

Многие методы спектральной оценки представляют спектр мощности не как меру, а в виде функции спектральной плотности. Это ведет к модификации задачи продолжимости: если задана фиксированная положительная конечная мера , которая определяет интеграл

(3.9)

то какие корреляционные векторы могут быть произведены от некоторой строго положительной функции ? При одном дополнительном ограничении на , которое легко удовлетворяется на практике, модно показать, что векторы, которые могут быть представлены таким образом, являются векторами, находящимися во внутренней части Е. Кроме того, можно показать, что любой век

тор во внутренней части Е может быть представлен в форме /3.9/ для некоторой непрерывной, строго положительной .

Теорема продолжимости для функций спектральной плотности:

Если каждое соседство каждой точки в К имеет строго положительную -меру, то

1/если равномерно ограничена относительно нуля по К,

то

;

2/если , то

для некоторой непрерывной, строго положительной функции .

Доказательство этой теоремы содержится в Приложении А.

1.3.2 Дискретизация спектральной основы

Многие представляющие интерес спектральные основы содержат бесконечное число точек. Эти спектральные основы следует часто аппроксимировать в вычислительных алгоритмах посредством конечного числа точек. Поэтому важно понимать эффекты такой аппроксимации.

Рассмотрим дискретную спектральную основу

(3.10)

Мера на дискретной основе полностью характеризуется ее значением в каждой точке. Итак, обратный интеграл -Фурье сводится к конечной сумме

(3.11)

Аналогично, для санкций спектральной плотности

(3.12)

Мера может считаться определяющей квадратурное правило для интегралов по спектральной основе.

Из определений продолжимых векторов корреляции и положительных полиномов можно заметить, что, если спектральная основа образуется посредством выбора конечного числа- точек из некоторой исходной спектральной основы, то новое множество Е является выпуклым многогранником, вписанным внутрь исходного множества Е, а новое множество Р является выпуклым многогранником, описанный вокруг первоначального множества Р. Следовательно, новое Е меньше исходного Е, а новое Р больше исходного Р. Достаточно плотная выборка исходной спектральной основы приведет к многогранникам, которые аппроксимируют исходные множества с произвольной точностью. Например, на рис.5 показан эффект аппроксимации спектральной основы четырьмя выборками для . Исходные конусы Е и Р имеют круговое поперечное сечение при , как показано на рис.3. Конусы, соответствующие выборочной основе имеют /оба/ квадратное поперечное сечение. Границы новых и старых конусов пересекаются у векторов, соответствующих точкам выборки.

1.4 Метод Писаренко

Писаренко описал метод спектральной оценки временной последовательности, в котором спектр моделируется в виде суммы импульсов штос компонента белого шума [5]. Если компонента белого шума выбирается настолько большой, насколько это возможно, то, как он показал, положение и амплитуды импульсов, необходимые для согласования измеренных корреляций, определяются единственным образом. Метод Писаренко будет выведен для более обшей ориентации ИП и для более общей шумовой компоненты. Связь метода Писаренко с вопросом продолжимости будет продемонстрирована.

Продолженная оценка Писаренко будет получена как решение задачи оптимизации, включающей минимизацию линейного функционала над выпуклой областью, определенной линейными ограничениями.

Решение этой задачи оптимизации существует всегда, но оно может быть не единственным. Получается задача двойственной' оптимизации, которая для случая временных последовательностей приводит к знакомой интерпретации метода Писаренко в виде разработки сглаживающего фильтра с ограничениями по методу наименьших квадратов. И опять, решение этой двойственной задачи существует всегда, но может быть не единственным.

Рассматриваются алгоритмы для вычисления по методу Писаренко. Основная задача оптимизации записывается, для спектральной основы, состоящее из конечного числа точек, в воде линейной программы стандартного вида. Рассматривается применение симплекс-метода для решения этой основной линейной программы. Представлена двойственная линейная программа. Рассматриваются также возможность создания вычислительных алгоритмов, более быстрых, чем симплекс-метод.

1.4.1 Метод Писаренко для решеток датчиков

Основой метода Писаренко является однозначное разложение /рис.6/ корреляционного вектора на сумму масштабированного вектора корреляции шума , во внутренней части Е, и остаток на границе Е

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5209
Авторов
на СтудИзбе
430
Средний доход
с одного платного файла
Обучение Подробнее