31056-1 (Рациональные уравнения и неравенства)

2016-07-31СтудИзба

Описание файла

Документ из архива "Рациональные уравнения и неравенства", который расположен в категории "". Всё это находится в предмете "математика" из , которые можно найти в файловом архиве . Не смотря на прямую связь этого архива с , его также можно найти и в других разделах. Архив можно найти в разделе "рефераты, доклады и презентации", в предмете "математика" в общих файлах.

Онлайн просмотр документа "31056-1"

Текст из документа "31056-1"

Рациональные уравнения и неравенства

Содержание

I. Рациональные уравнения.

  1. Линейные уравнения.

  2. Системы линейных уравнений.

  3. Квадратные уравнения и уравнения, сводящиеся к ним.

  4. Возвратные уравнения.

  5. Формула Виета для многочленов высших степеней.

  6. Системы уравнений второй степени.

  7. Метод введения новых неизвестных при решении уравнений и систем уравнений.

  8. Однородные уравнения.

  9. Решение симметрических систем уравнений.

  10. Уравнения и системы уравнений с параметрами.

  11. Графический метод решения систем нелинейных уравнений.

  12. Уравнения, содержащие знак модуля.

  13. Основные методы решения рациональных уравнений

II. Рациональные неравенства.

  1. Свойства равносильных неравенств.

  2. Алгебраические неравенства.

  3. Метод интервалов.

  4. Дробно-рациональные неравенства.

  5. Неравенства, содержащие неизвестное под знаком абсолютной величины.

  6. Неравенства с параметрами.

  7. Системы рациональных неравенств.

  8. Графическое решение неравенств.

III. Проверочный тест.

Рациональные уравнения

Функция вида

P(x) = a0xn + a1xn – 1 + a2xn – 2 + … + an – 1x + an,

где n — натуральное, a0, a1,…, an — некоторые действительные числа, называется целой рациональной функцией.

Уравнение вида P(x) = 0, где P(x) — целая рациональная функция, называется целым рациональным уравнением.

Уравнение вида

P1(x) / Q1(x) + P2(x) / Q2(x) + … + Pm(x) / Qm(x) = 0,

где P1(x), P2(x), … ,Pm(x), Q1(x), Q2(x), …, Qm(x) — целые рациональные функции, называется рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x) — многочлены (Q (x) 0), сводится к решению уравнения P (x) = 0 и проверке того, что корни удовлетворяют условию Q (x) 0.

Линейные уравнения.

Уравнения вида ax+b=0, где a и b — некоторые постоянные, называется линейным уравнением.

Если a0, то линейное уравнение имеет единственный корень: x = -b /a.

Если a=0; b0, то линейное уравнение решений не имеет.

Если a=0; b=0, то, переписав исходное уравнение в виде ax = -b, легко видеть, что любое x является решением линейного уравнения.

Уравнение прямой имеет вид: y = ax + b.

Если прямая проходит через точку с координатами X0 и Y0, то эти координаты удовлетворяют уравнению прямой, т. е. Y0 = aX0 + b.

Пример 1.1. Решить уравнение

2x – 3 + 4(x – 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,

6x = 12, x = 2.

Ответ: 2.

Пример 1.2. Решить уравнение

2x – 3 + 2(x – 1) = 4(x – 1) – 7.

Решение. 2x + 2x – 4x = 3 +2 – 4 – 7, 0x = – 6.

Ответ: .

Пример 1.3. Решить уравнение.

2x + 3 – 6(x – 1) = 4(x – 1) + 5.

Решение. 2x – 6x + 3 + 6 = 4 – 4x + 5,

– 4x + 9 = 9 – 4x,

-4x + 4x = 9 – 9,

0x = 0.

Ответ: Любое число.

Системы линейных уравнений.

Уравнение вида

a1x1 + a2x2 + … + anxn = b,

где a1, b1, … ,an, b —некоторые постоянные, называется линейным уравнением с n неизвестными x1, x2, …, xn.

Система уравнений называется линейной, если все уравнения, входящие в систему, являются линейными. Если система из n неизвестных, то возможны следующие три случая:

  1. система не имеет решений;

  2. система имеет ровно одно решение;

  3. система имеет бесконечно много решений.

Пример 2.4. решить систему уравнений

2 x + 3y = 8,

3x + 2y = 7.

Решение. Решить систему линейных уравнений можно способом подстановки, который состоит в том, что какого-либо уравнения системы выражают одно неизвестное через другие неизвестные, а затем подставляют значение этого неизвестного в остальные уравнения.

Из первого уравнения выражаем: x= (8 – 3y) / 2. Подставляем это выражение во второе уравнение и получаем систему уравнений


x = (8 – 3y) / 2,

3(8 – 3y) / 2 + 2y = 7.

Из второго уравнения получаем y = 2. С учётом этого из первого уравнения x = 1.

Ответ: (1; 2).

Пример 2.5. Решить систему уравнений


x + y = 3,

2x + 2y = 7.

Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения x + y = 3, а из второго x + y = 3,5).

Ответ: Решений нет.

Пример 2.6. решить систему уравнений


x + y = 5,

2x + 2y = 10.

Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.

Пример 2.7. решить систему уравнений

x + y – z = 2,

2x – y + 4z = 1,

  • x + 6y + z = 5.

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на – 2 и, складывая полученный результат со вторым уравнением, получаем – 3y + 6z = – 3. Это уравнение можно переписать в виде y – 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид


x + y – z = 2,

y – 2z = 1,

y = 1.

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Пример 2.8. при каких значениях параметра a система уравнений

2 x + ay = a + 2,

(a + 1)x + 2ay = 2a + 4

имеет бесконечно много решений?

Решение. Из первого уравнения выражаем x:

x = – (a / 2)y + a / 2 +1.

Подставляя это выражение во второе уравнение, получаем

(a + 1)( – (a / 2)y + a / 2 +1) + 2ay = 2a + 4.

Далее умножим обе части уравнения на 2 и упростим его:

(a + 1)(a + 2 – ay) + 4ay = 4a + 8,

4ay – a(a + 1)y = 4(a + 2) – (a + 1)(a + 2),

ya(4 – a – 1 ) = (a + 2)(4 – a – 1),

ya(3 – a) = (a + 2)(3 – a).

Анализируя последнее уравнение, отметим, что при a = 3 оно имеет вид 0y = 0, т.е. оно удовлетворяется при любых значениях y.

Ответ: 3.

Квадратные уравнения и уравнения, сводящиеся к ним.

Уравнение вида ax2 + bx + c = 0, где a, b и c — некоторые числа (a0);

x — переменная, называется квадратным уравнением.

Формула решения квадратного уравнения.

Сначала разделим обе части уравнения ax2 + bx + c = 0 на a — от этого его корни не изменятся. Для решения получившегося уравнения

x2 + (b / a)x + (c / a) = 0

выделим в левой части полный квадрат

x2 + (b / a) + (c / a) = (x2 + 2(b / 2a)x + (b / 2a)2) – (b / 2a)2 + (c / a) =

= (x + (b / 2a))2 – (b2) / (4a2) + (c / a) = (x + (b / 2a))2 – ((b2 – 4ac) / (4a2)).

Для краткости обозначим выражение (b2 – 4ac) через D. Тогда полученное тождество примет вид

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2)).

Возможны три случая:

  1. если число D положительно (D > 0), то в этом случае можно извлечь из D квадратный корень и записать D в виде D = (D)2. Тогда

D / (4a2) = (D)2 / (2a)2 = (D / 2a)2, потому тождество принимает вид

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / 2a)2.

По формуле разности квадратов выводим отсюда:

x2 + (b / a)x + (c / a) = (x + (b / 2a) – (D / 2a))(x + (b / 2a) + (D / 2a)) =

= (x – (( -b + D) / 2a)) (x – (( – b – D) / 2a)).

Теорема: Если выполняется тождество

ax2 + bx + c = a(x – x1)(x – x2),

то квадратное уравнение ax2 + bx + c = 0 при X1 X2 имеет два корня X1 и X2, а при X1 = X2 — лишь один корень X1.

В силу этой теоремы из, выведенного выше, тождества следует, что уравнение

x2 + (b / a)x + (c / a) = 0,

а тем самым и уравнение ax2 + bx + c = 0, имеет два корня:

X1=(-b + D) / 2a; X2= (-b - D) / 2a.

Таким образом x2 + (b / a)x + (c / a) = (x – x1)(x – x2).

Обычно эти корни записывают одной формулой:

где b2 – 4ac = D.

  1. если число D равно нулю (D = 0), то тождество

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))

принимает вид x2 + (b / a)x + (c / a) = (x + (b / 2a))2.

Отсюда следует, что при D = 0 уравнение ax2 + bx + c = 0 имеет один корень кратности 2: X1 = – b / 2a

3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение

x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))

является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение

x2 + (b / a)x + (c / a) = 0

не имеет действительных корней. Не имеет их и уравнение ax2 + bx + c = 0.

Таким образом, для решения квадратного уравнения следует вычислить дискриминант

D = b2 – 4ac.

Если D = 0, то квадратное уравнение имеет единственное решение:

X=-b / (2a).

Если D > 0, то квадратное уравнение имеет два корня:

X1=(-b + D) / (2a); X2= (-b - D) / (2a).

Если D < 0, то квадратное уравнение не имеет корней.

Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:

  1. b = 0; c 0; c / a <0; X1,2 = (-c / a )

  2. b 0; c = 0; X1 = 0, X2= -b / a.

Корни квадратного уравнения общего вида ax2 + bx + c = 0 находятся по формуле


Квадратное уравнение, в котором коэффициент при x2 равен 1, называется приведённым. Обычно приведённое квадратное уравнение обозначают так:

x2 + px + q = 0.

Теорема Виета.

Мы вывели тождество

x2 + (b / a)x + (c / a) = (x – x1)(x – x2),

где X1 и X2 — корни квадратного уравнения ax2 + bx + c =0. Раскроем скобки в правой части этого тождества.

x2 + (b / a)x + (c / a) = x2 – x1x – x2x + x1x2 = x2 – (x1 + x2)x +x1x2.

Отсюда следует, что X1 + X2 = – b / a и X1X2 = c / a. Мы доказали следующую теорему, впервые установленную французским математиком Ф. Виетом (1540 – 1603):

Теорема 1 (Виета). Сумма корней квадратного уравнения равна коэффициенту при X, взятому c противоположным знаком и делённому на коэффициент при X2; произведение корней этого уравнения равно свободному члену, делённому на коэффициент при X2.

Теорема 2 (обратная). Если выполняются равенства

X1 + X2 = – b / a и X1X2 = c / a,

то числа X1 и X2 являются корнями квадратного уравнения ax2 + bx + c = 0.

Замечание. Формулы X1 + X2 = – b / a и X1X2 = c / a остаются верными и в случае, когда уравнение ax2 + bx + c = 0 имеет один корень X1 кратности 2, если положить в указанных формулах X2 = X1. Поэтому принято считать, что при D = 0 уравнение ax2 + bx +c = 0 имеет два совпадающих друг с другом корня.

При решении задач, связанных с теоремой Виета, полезно использовать соотношения

(1 / X1) + (1/ X2)= ( X1 + X2)/ X1X2 ;

X12 + X22 = (X1 + X2)2 – 2 X1X2;

X1 / X2 + X2 / X1 = (X12 + X2 2) / X1X2 = ((X1 + X2)2 – 2X1X2) / X1X2;

X13 + X23 = (X1 + X2)(X12 – X1X2 + X22) =

= (X1 + X2)((X1 + X2)2 – 3X1X2).

Пример 3.9. Решить уравнение 2x2 + 5x – 1 = 0.

Решение. D = 25 – 42(– 1) = 33 >0;

X1 = (- 5 + 33) / 4; X2 = (- 5 -33) / 4.

Ответ: X1 = (- 5 + 33) / 4; X2 = (- 5 -33) / 4.

Пример 3.10. Решить уравнение x3 – 5x2 + 6x = 0

Решение. Разложим левую часть уравнения на множители x(x2 – 5x + 6) = 0,

отсюда x = 0 или x2 – 5x + 6 = 0.

Решая квадратное уравнение, получаем X1 = 2 , X2 = 3.

Ответ: 0; 2; 3.

Пример 3.11.

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5167
Авторов
на СтудИзбе
438
Средний доход
с одного платного файла
Обучение Подробнее