Главная » Все файлы » Просмотр файлов из архивов » Файлы формата DJVU » Сосулин Ю. Г. - Теоретические основы радиолокации и радионавигации - Радио и связь

Сосулин Ю. Г. - Теоретические основы радиолокации и радионавигации - Радио и связь, страница 10

DJVU-файл Сосулин Ю. Г. - Теоретические основы радиолокации и радионавигации - Радио и связь, страница 10 Защита БРЛС от радиопомех (1513): Книга - 9 семестр (1 семестр магистратуры)Сосулин Ю. Г. - Теоретические основы радиолокации и радионавигации - Радио и связь: Защита БРЛС от радиопомех - DJVU, страница 10 (1513) - СтудИзба2016-08-25СтудИзба

Описание файла

DJVU-файл из архива "Сосулин Ю. Г. - Теоретические основы радиолокации и радионавигации - Радио и связь", который расположен в категории "". Всё это находится в предмете "защита брлс от радиопомех" из 9 семестр (1 семестр магистратуры), которые можно найти в файловом архиве МАИ. Не смотря на прямую связь этого архива с МАИ, его также можно найти и в других разделах. Архив можно найти в разделе "книги и методические указания", в предмете "защита брлс от радиопомех" в общих файлах.

Просмотр DJVU-файла онлайн

Распознанный текст из DJVU-файла, 10 - страница

(2.40) 'г 2поо 1 2 а~ Подставив (39), (40) в (37), получим л л Л =ехр ~ — С' уд зд — — ~' зг п г г.г *г ~ оо 2оо,ф ! Для упрошения обработки целесообразно вместо отношения правдоподобия Л, формировать его логарифм з„=1пЛ (см. (26)): л л ~и= г ~ Удэд (2.41) ог 2оо д=1 Перейдем к непрерывному времени наблюдения. Положим 11 =О, /„ =Т, кроме того, учтем, что плотность вероятностей независимых гауссовских величин (38),при непрерывном времени переходит в функционал плотности вероятностей шума. Если спектральная плотность огоследнего равна л/о/2 (см.

(35)), а о'о— дисперсия гауссовских величин 4д, то при переходе к непрерывному времени (от $д к я(1)) можно воспользоваться зависимостью оо г= (й/о/2)/Л /, Л1=1=- /д — 1»-. (2.42) (при Л1-л-0 ог;+.ао). Подставляя (42) в (41) и переходя к пределу при Лт-+О, получаем 42' Ю) Рис. 2.5. Корреляционная (а) и фильтровая (б) структурные схемы оптимальных обнаружителей детерминированного сигнала т(е) =('и( ) гГт) ае Рис. 2.6. Времеинйе диаграммы напряжений в корреляционном обнару- кителе т т г (Т) = — )' д (() З (() СЮ вЂ” — )" Зв (() б((.

)уе о 'уо о т Детерминированные величины — и )" — с(г можно вклю- ~е о ге чить в значение порога обнаружения, в результате алгоритм оптимального обнаружения приобретет вид т г = р у (() з (() с(( Ь. (2.44) о ле Интеграл, стоящий в левой части неравенства (44), является достаточной статистикой и называется корреляционным, а сам оптимальный обнаружитель — корреляционным обнаружителем (рис. 2.5,а).

Этот обнаружитель состоит из умножителя и интегратора, образующих коррелятор, и порогового устройства, работу которых поясняют временные диаграммы на рис. 2.6. Техническая реализация алгоритма обнаружения (44) в виде корреляционной схемы:не является единственно возможной. Кор- 4$ (2.45) реляционный интеграл может быть сформирован также при помощи линейного фильтра. Действительно, если й(() — импульсная характеристика * фильтра, на вход которого поступает процесс у(г), то результат г'(Т) на выходе фильтра определяется интегралом свертки: т г'(Т) = ( у(г) Ь(Т вЂ” () Ж. о Если теперь положить п(Т вЂ” 1) =з(~), то величина г'(Т) совпадет с корреляционным интегралом г.

Отсюда следует, что импульсная характеристика фильтра, на выходе которого формируется значение корреляционного интеграла в момент окончания наблюдения Т, йсе (У) = з (Т вЂ” г). (2.46) Такой фильтр называется согласованным, так как его импульсная характеристика согласована с обнаружнваемым сигналом, являясь в соответствии с (46) «зеркальным отражением» формы сиг~нала Поскольку согласованный фильтр (СФ) — составная часть оптимального обнаружителя (см. рис 25,б) и, как ясно из дальнейшего, макснмизнрует отношение сигнал-шум на выходе, его называют также оптимальным Перейдем теперь от временного описания согласованного фильтра к частотному, учитывая, что коэффициент передачи К(1ьз) (комплексная частотная характеристика) фильтра есть преобразование Фурье от его импульсной характеристики: К () аз) = (' и (г) ехр ( — ) ьз г') пг.

(2 47) Подставляя (46) в (47) и заменяя переменную по формуле т= =Т вЂ” 1, получаем коэффициент передачи согласованного фильтра К„~ () ьз) = ехр ( — ) азТ) г'е () ьз), (2.48) О где Р" ()аз) = )' з(т)ехр()ьзт)г(т — величина, комплексно-сопряженная спектральной ~плотности сигнала Р()ьз) = )' з (т) Х М Х ехр ( — ) езт) г(т. Таким образом, коэффициент передачи согласованного фильтра с точностью до множителя запаздывания ехр( — )гвТ) совпадает с величиной, комплексно-сопряженной спектральной плотности ожидаемого сигнала з(г). Учитывая представление спект- ' Отклик фильтра на воздействие в виде дельта-функцнн 44 г т оф= ) ) з(1')з11) — б(1' — 1")2Ц'г(12= о о 2 т Зо (12) 112 о Е о (2.52) В результате отношение сигнал-шум по мощности в момент вре- мени Т дое = з,',/ог 2 Е!Ио.

ральной плотности через ее модуль и аргумент Е()22) =(1. ()о2) ) Х Хехр() агпГ()оз)), из (48) получаем ()(',Е () «2)! = (Е () 22Н (2.49) атд Ков () Оз) = — ать Е () Е2) — О2 Т. (2.50) Равенство (49) означает, что амплитудно-частотная характеристика согласованного фильтра совпадает с амплитудно-частотным спектром полезного сигнала. Физический смысл полученного результата ясен: оптимальный фильтр должен пропускать в большей степени те составляющие спектра сигнала, которые имеют большую интенсивность.

Равенство (50) означает, что фазочастотпая характеристика согласованного фильтра равна фазочастотному спектру сигнала, взятому с обратным знаком и сдвинутому на значение — гвТ. Благодаря такой характеристике фазовые сдвиги между гармоническими составляющими сигнала компенсируются так, что в момент отсчета Т все составляющие сигнала суммируются в фазе н выходной сигнал будет максимальным. Определим теперь отношение сигнал-шум д,е при выходе согласованного фильтра в момент отсчета Т.

Выходной эффект фильтра определяется формулой (45). Учитывая, что й(Т вЂ” 1) =з(1) н подставляя у(1) =з(1), получаем величину полезного сигнала на т выходе согласованного фильтра: з,ф= ) зо(1)Н=Е. о Так как Мо(1) =0 (см. (34)), то среднее значение шума на выходе фильтра также равно нулю: т т М г = М (' $ (1) з (1) Ж )" з (1) М $ (1) 2(1 = О. (2.51) о о В силу этого дисперсия шума на выходе согласованного фильтра определяется формулой т т о,'„, = М го = )' (' з (1') з (12) М Я (1') $ (1")) Й' г)1". о о С учетом (34) и фильтрующего свойства дельта-функции полу- чаем Таким образом, отнщпение сигнал-шум басф на выходе согласованного фильтра определяется отношением энергии полезного сигнала Е к спектральной плотности шума и не зависит от формы сигнала.

Можно показать, что отношение сигнал-шум д на выходе любого линейного фильтра, на вход которого воздействуют белый шум н детерминированный сигнал, удовлетворяет неравенству" г) ~( басф = 2 Е(йУе. (2.53) Отсюда следует, что согласованный фильтр является оптимальным в том смысле, что он макснмизирует отношение сигнал-шум на выходе. Этот результат, вообще говоря, вытекает и из того, что согласованный фильтр есть составная часть оптимального обнаружителя (рис. 2.5,б).

Отметим, что максимальное отношение сигнал-шум на входе порогового устройства (т. е. на выходе коррелятора или же согласованного фильтра) достигается в момент окончания наблюдения (=Т, который соответствует длительности полезного сигнала. Именно в этот момент значение корреляционного интеграла в должно сравниваться с порогом обнаружения Ь. Технически это обеспечивается, например, применением стробируюгцей схемы (которую можно включить в состав порогового устройства), селектирующей с помощью узкого импульса в момент времени 1=Т соответствующий участок напряжения.

Перейдем к вычислению показателей качества обнаружения (ЗО). Для этого потребуется определить распределение вероятностей статистики, поступающей на пороговое устройство, а именно распределение вероятностей корреляционного интеграла г при отсутствии (6=0) и наличии (0=1) сигнала з(1) на входе обнару- жителя. Рассмотрим случай 6=0, т. е.

когда на входе обнаружителя присутствует только шум $(1). Тогда у(1) =5(1) и величина г (см. (44) ), являясь линейным преобразованием белого гауссовского шума, также имеет гауссовское распределение и, следовательно, полностью определяется математическим ожиданием и дисперсией. Последние согласно (51), (52) равны М (г(д = 0) = О, а) (г) д = 0) = о' = Ж Е(2. сф Таким образом, плотность вероятностей величины г при 6=0 имеет вид ш (г(д = О) = (1!)/2 я о,ф) ехр ( — га/2 а,ф).

с Это следует иа более общего неравенства (см ()07)), справедливого и для «небелого» шума. 46 Перейдем к случаю 6=1. Поскольку сигнал является детерминированным, то распределение величины 2 по-прежнему остается гауссовским. Дисперсия величины 2, очевидно, также не меняется: Р [г[д = 1! = 0 [з[д = О] = ог сф ' Изменяется лишь математическое ожидание: т т М [а[О = 1[ = М ~ [з ([) + $ (()) з (1) с(1 = [ аа (1) г[( = Е. о о (2.55) тата-г 1Р' 1Д-и 1Л ' 1Р т' 1Р " дмт ~-г ху-' 1Р и 1У' 1Р и 1р-тг Рис.

2.?. Характеристи«и оптимального обнаружения детерминиронаиного сигнала ( — — ), сигнала со случайной начальной фазой ( — — — ) и сигнала со случайными начальной фазой и амплитудой ( — †) йу и тг О а д 1р 12 тфтИГн, Следовательно, ш (з[д = 1) =(1!'у'2тт о ф) ехр ( — (з — Е)Ч2огф), Таким образом, вероятности ложной тревоги и правильного обнаружения (ЗО): гз Е= ) ехр ~ — — г1 с(г, л [/2и о,ф 2осф / В= )' ехр — ~ с(з. 1 Г (г — Е) (2.54) )/2 и осф ~ 2 осф Используя интеграл вероятностей х 1 з т Ф (х) = [' ехр ~ — — ) г(у, ьг2 и формулы (54) можно переписать в виде Е = 1 — Ф (йн), )'.) = 1 — чб (йн — [т'д, ), (2.5б) где й,=й[осф — нормированный порог; г(сф=2Е[Лто — отношение сигнал-шум на выходе согласованного фильтра.

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5280
Авторов
на СтудИзбе
419
Средний доход
с одного платного файла
Обучение Подробнее