Главная » Просмотр файлов » Ск. упл.с.44-49

Ск. упл.с.44-49 (949115)

Файл №949115 Ск. упл.с.44-49 (Лекции (много вордовский файлов))Ск. упл.с.44-49 (949115)2013-09-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

единице, весьма незначительны, так что с достаточной степенью приближения околозвуковые явления можно рассматривать как изоэнтропические.

Прямоточный реактивный двигатель

Рис. 13. Прямоточный реактивный двигатель:

1 – сверхзвуковой диффузор (воздухозабор); 2 – форсунки;
3 – камера сгорания; 4 – сверхзвуковое сопло

Простым примером одномерного потока с прямым скачком уплотнения служит проточная часть прямоточного реактивного двигателя (ПРД) (рис. 13). Н азначение сверхзвукового диффузора заключается в превращении кинетической энергии потока, вошедшего внутрь двигателя, в давление, необходимое для повышения интенсивности горения топлива. При сверхзвуковом движении образуется прямой скачок уплотнения. Оптимальным было бы расположение его в горле II диффузора (см. рис 13). В самом деле, в этом случае набегающий сверхзвуковой поток будет замедляться в сужающемся канале (на участке III), перейдет скачком в дозвуковой поток и, оказавшись далее в расширяющемся канале (IIIII), будет продолжать замедляться, восстанавливая давление.

В
действительности же картина выглядит иначе. При сверхзвуковом полете возникает отошедшая головная волна, имеющая прямолинейный участок, который можно рассматривать как прямой скачок. Наличие его на входе резко уменьшает КПД двигателя. Осуществим следующую оценку. Пусть скорость аппарата w > a1, давление в набегающем потоке Р1, давление в камере сгорания Р'2. Предполагая сначала процесс протекания воздуха сквозь камеру сгорания изоэнтропическим (т. е. без скачка) и пренебрегая малой скоростью движения воздуха в камере, получим:

Если М1 = 2, получим сжатие воздуха в камере Р'2 / P1 = 1,8 3,5  8.
На высоте H = 10 км давление составляет Р1 = 0,26 ата в камере сгорания при М = 2 (что соответствует скорости самолета 2160 км/ч на высоте 10 км); при изоэнтропичности торможения Р'2 = 2 ата. Такое повышение давления хорошо отразилось бы на работе двигателя. Но в действительности изоэнтропическое движение не осуществляется: образуется ударная волна (или скачок), вызывающая потери энергии. Поэтому, согласно рис. 12, давление в камере будет составлять Р'2 = P20 = 0,75 · P10 = 0,75 · 2 = 1,5 ата, т. е. 75%
от давления при изоэнтропическом торможении. Разница будет еще больше при большем М. Так, при М1 = 3 давление в камере составит 35%, а при
М1 = 5 – всего 5%.

Для сохранения эффекта повышения давления необходимо приближать процесс восстановления давления к изоэнтропическому, т. е бороться с образующимся перед входом в двигатель скачком уплотнения. Это достигается путем замены тупого носка тела постепенно расширяющейся «иглой» (рис. 14), н

Рис. 14. Расширяющаяся игла:

скачки: 1 – косые; 2 – прямой


а поверхности которой в сверхзвуковом потоке образуются слабые скачки со сравнительно малыми углами . При этом, как видно из ранее выведенных формул, потери механической энергии (благодаря наличию у числа Маха М1 множителя sin  будут снижаться. Отметим, что число косых скачков будет определяться числом изломов поверхностей, на которых происходит торможение.

Т

Рис. 15. Фронты скачков в игле


еоретически при бесконечном увеличении числа изломов и, следовательно, бесконечно большем количестве бесконечно слабых косых скачков можно получить изоэнтропическое торможение потока. Геометрическое профилирование такой иглы (рис. 15) должно сводиться, к тому, чтобы фронты скачков касались входной кромки воздухозаборника
(в этом случае игла не будет оказывать влияние на внешний поток).

Кроме того, плоскость прямого скачка должна располагаться в минимальном сечении воздухозаборника, так как скорости за прямым скачком – дозвуковые и этот дозвуковой поток будет дальше, в расширяющемся канале, тормозиться. Это будет расчетный режим. Тяга при этом будет максимальной, поскольку происходит наилучшее восстановление полного давления.

Ударная поляра

Рис. 16. Треугольник скоростей
на скачке


Для определения формы скачка изобразим графически треугольник скоростей на скачке (рис. 16). Расположим вектор w1 на оси x. Если  – угол скачка, то векторы OB и BA представляют собой касательную и нормальную составляющие w1. Зная угол отклонения потока , проводим линию вектора скорости за скачком ОС, равного w2. Это построение можно выполнить, так как w = w = w. Тогда вектор BC =wn2. Заметим, что углы 
и  связаны между собой, т. е. при изменении  меняется и . Представим вектор w2 двумя другими составляющими: u2 и v2 (это проекции w2 на w1 и на нормаль к нему). Найдем уравнение кривой, описываемой концом вектора w2 при w1 = const
и переменных углах поворота 


Для получения искомой зависимости возьмем уравнение (3.8):


– и подставим в него соотношения, вытекающие из треугольника скоростей:

П
олучим

О
тсюда

У
читывая, что

з
апишем:

и
ли

и
ли

Рис. 17. Ударная поляра

Уравнение (3.16) графически изображается кривой, известной под названием строфоиды (рис. 17). В теории скачков эту кривую называют ударной полярой. Найдем характерные точки строфоиды. Из уравнения (3.16) видно, что y = 0 при x = w1 и x = a* 2 / w1.
Первый случай (см. рис. 17, точка А), т. е. когда х = u2 = w1, tg  =
= (w1u2) / v2 = 0, w2 = w1, дает решение, соответствующее скачку бесконечно малой интенсивности (бесскачковый процесс). Касательная к кривой в точке А расположена под

углом  = arcsin (1 / M1) = зв. (Это доказывается, если взять производную от (3.16) и подставить в нее x = w1.) Второй случай (точка D) характеризует переход косого скачка в прямой, угол которого   90. Из рис. 17 видно, что две ветви, расположенные между точками А и В, уходят в бесконечность, асимптотически приближаясь к прямой, проходящей через точку В. Значение скоростей на этих ветвях больше w1, поэтому эти ветви не рассматриваются. Для того чтобы определить скорость за косым скачком и угол его фронта, из точки 0 под углом  проведем прямую 0N (см. рис. 17). Модуль этого вектора (0N) дает величину скорости за скачком w2, а угол ANC равен углу N наклона фронта ударной волны. Вектор 0N пресекает строфоиду еще в одной точке – точке Е, которая соответствует меньшей скорости w2 за скачком. Как показывают наблюдения, физически реализуются присоединенные скачки уплотнения с большей скоростью за ними, т. е. скачки с меньшей интенсивностью. При   0 точка N сливается с точкой А, что физически соответствует превращению ударной волны в скачок бесконечно малой интенсивности (при этом   зв; w2w1).

Возрастание угла отклонения потока (удаление точки N от точки А) приводит к увеличению угла скачка и возрастанию его интенсивности (уменьшению w2). На рис. 17 видно, что при некотором угле  = кр прямая, проведенная из точки 0, коснется кривой в точке F. Эта касательная определит и максимальный угол отклонения фронта скачка кр. Если угол  поворота потока будет больше, чем угол кр, то графически, при помощи ударной поляры, нельзя найти решение для скачка уплотнения. Это означает, что рассмотренная модель прямолинейного присоединенного скачка, исходящего из вершины угла (ракеты) 0, должна быть заменена другой моделью – моделью отошедшего криволинейного скачка.

Увеличение   кр (рис. 18) приводит к поджатию потока, т. е. к увеличению его T, P, . При этом возрастает скорость распространения
_____

в

Рис. 18. Отошедший скачок


озмущений а2 =  RT2; она становится больше скорости потока, а возмущения «движутся» навстречу ему. Величины
T, P,  а также скорость возмущения а2 при удалении от клина будут уменьшаться. На некотором расстоянии от клина возникает геометрическое место точек, в котором а2 = w1. Совокупность таких точек и будет представлять собой отошедший криволинейный скачок уплотнения. Если форма этого скачка известна, то можно установить количественное соответствие между точками ударной поляры и поверхности скачка.

Пусть, например, заданы угол  и точки Е и N на ударной поляре. Точке N соответствует угол скачка N ( N =  ANC), а точке Е – угол Е ( Е =  AED). Если конфигурация фронта ударной волны (отошедшего скачка) известна, то непосредственным измерением можно отыскать на ней точку N (с углом наклона волны N) и точку Е (с углом наклона Е). Таким же путем можно отыскать на скачке точку F, соответствующую критическому углу поворота кр.

Характеристики

Тип файла
Документ
Размер
1,05 Mb
Тип материала
Высшее учебное заведение

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6310
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее