Плоское,с.51-52 (949084)
Текст из файла
Раздел 4. | ПЛОСКОЕ БЕЗВИХРЕВОЕ ДВИЖЕНИЕ |
Функция тока и функция потенциала скорости
Изучение безвихревых движений жидкости имеет большое значение в связи с тем, что во многих задачах гидромеханики можно выделить в потоке реальной жидкости области, в которых течение практически безвихревое. Например, в задаче обтекания твердого тела весь поток жидкости разделяется на две области: 1) пограничного слоя; 2) внешнего потока (в нем, как показывает опыт, силами вязкости можно пренебречь по сравнению с другими силами, т. е. считать движение жидкости в этой области безвихревым).
Будем рассматривать только плоские безвихревые потоки жидкости, т. е. такие потоки, у которых все векторные и скалярные величины зависят только от двух координат и времени. Считая, что плоскость течения совпадает с плоскостью х0у, получим
И
з этого условия следует, что существует некоторая функция , частные производные которой по координатам х, у равны соответствующим компонентам скорости, т. е.
Д
ействительно, подставив значения (4.2) в (4.1), получим тождество
Функцию принято называть потенциалом скорости, а безвихревое движение – потенциальным.
Понятие «потенциал скорости» в газовой динамике тождественно понятию «потенциал сил» в механике твердого тела. Из механики известно, что производная от потенциала сил по какому‑либо направлению дает проекцию потенциальной силы на это направление.
При плоском течении существует еще одна функция координат и времени, определяющая его скоростное поле. Эта функция называется функцией тока и обозначается как (х, у, t). Частные производные по координатам от нее при течении несжимаемой жидкости составляют
Необходимым и достаточным условием существования такой функции является выполнение уравнения неразрывности течения, т. е. когда во всех точках потока
Действительно, подставляя сюда значения скоростей из равенств (4.3), получим
т. е. уравнение неразрывности удовлетворяется тождественно.
Функция тока имеет, кроме того, и простой гидродинамический смысл. В самом деле, записав дифференциальное уравнение линий тока wx / dx = wy / dy и подставив в него значения скоростей из уравнения (4.3), получим
Отсюда следует, что функция сохраняет постоянное значение вдоль линий тока, т. е., иными словами, равенство (х, у) = с является уравнением семейства линий тока. Таким образом, секундный объемный расход жидкости, текущей между линиями тока, равен разности значений функции тока на этих линиях.
Рис. 27. Сетка течения
В плоском потоке, кроме линий тока, на которых (x, y) = с, можно построить еще одну систему линий, на которых (x, y) = с. Такие линии называют эквипотенциальными. Совокупность линий тока и линий равного потенциала называют сеткой течения плоского потенциального потока (рис. 27).Основное свойство такой сетки состоит в том, что линии тока и линии равного потенциала пересекаются под прямым углом, т. е. сетка течения ортогональна. В этом можно убедиться, если найти скалярное произведение векторов‑ градиентов функций и. А именно:
что и доказывает ортогональность сетки течения. При установившемся движении жидкости сетка течения зависит только от формы границ потока, так как они определяют форму линий тока, совпадающих с ними. Если границы двух таких потоков геометрически подобны и граничные условия тождественны, то и сетки течения этих потоков будут геометрически подобными. Поэтому по сетке течения известного потока можно найти распределение скоростей и давлений в любом геометрически подобном ему потенциальном потоке с теми же граничными условиями.
52
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.