Главная » Просмотр файлов » Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s)

Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (940508), страница 27

Файл №940508 Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (Антидемидович) 27 страницаAnti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (940508) страница 272013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 27)

-~р. п ,Гз з-зр то окончательно имеем 1 = 2Я Охи = гяйг . З» 2 и 202. — а р( + Ых, где у — заыкнугая кривая, заданная уравнениями 2. 1=~ у х ах+я * у х'у х = а сох з, у = асов 21, х = асов ЗГ, робегаемая в направлении возрастания параметра Г. Ч и нзм М = (х, х) пробегает часть кривой у ч П и изменении г от О до з подвижная точка М = (, у, 2 чкаМ ол жноы направлении — от точки М~ до к ~~А ~~им~о а«ладываются, н зта кривая ю часть к ивой т в протпвоположн и т чкн Ме. Таким образом, точки замкнутой крпвррй з взаимно накл пе ограничивает нпкаяой поверхности. Слсдоаател ио, 200 Гл.

2. Кратныен криволинейные интегралы Упражнения для самостоятелъной работы Прнл~еняя формулу Грина, вычислить криволинейные интегралы: 139. !=уху бу — х убх,где у=((х,у)ЕИг:хг+уг=а ). 140. 1 = у(х + у) йх — (х — у) Ау, где ", = ((х, у) Е Иг: -,т + улт = 1) . т 141. ? = у е ~» ег ~(соя 2ху ах+ зщ 2хуЫу), где т = ((х, у) Е Иг: ха + у = Аг). 7 142. Какому условию должна удовлетворять дифференцируеыая функция (х, у) Р(х, у), чтобы криволинейный интеграл Г(х, у)(убх+ хну) А»В не зависел от вида пути интегрирования? 143. Вычислить 1 = — у — ггт —, если Х = ах+ бу, У = ох+ бу и простой замкиутый аг-уах 2.

г хгег контур ", окружает начало координат (аб — бс ф 0). 144. Вычислить интеграл 1 (см. предыдущую задачу), если Х = р(х, у). ?» = 9(х. у) и простой контур ", окружает начало координат, причем кривые, определяемые уравнениями с»(х, у) = О и 0(х, у) = О, имеют несколько простых точек пересечения внутри контура т.

145. Вычггсл1гть площадь фигуры, ограниченной кривой т, заданной уравнением (х+ у)"+ + = ах"у, а > О. п > О, ил > О. 146. Доказатгч что объелг тела, образованного вращением вокруг осп Ох простого замкнутого контура;, расположенного в верхней полуплоскости у > О, равен К = —:г ~ уг бх. Применяя формулу Остроградского, преобразовать следующие поверхностные интегралы, если гладкая поверхность Я ограничивает конечный объем Н н соха, созб, соз;— направляющпе косинусы внешней норлгали и к поверхности Я: 14Т )')»хгЫуаг+ у 4»Ых+ гг бхбр 148 )) '" ~г'"»~'"' ао г г » +г +» 149.

Д' (ф соя о+ ф соз)? 4- фебу) ЫЯ. 5 150. Вычислить интеграл г' = ц х 4уйг+ уг Ыггбх+ г бх бу,где Я вЂ” внешняя с~арона г границы куба К = ((х. у, г) б Иг: 0 ( х ( а, О ( у ( а, О ~ (г ~ (а). 151. Найти объем тела Т. ограниченного поверхностью Я, аацапиой уравнениями г = асахи, у = вял е, г = -а+ а сох е, а > О, а > О, н плоскостямн х = О, г = О. 152. Доказать формулу щ — 'ге»»с = -' ц соя(т, и) ао, где Я вЂ” край компакта К, и — внешняя единичнал норыаль к поверхности Я в точке (с, «, с).

г = (б — х)г+(у — «)г+(ь — г)з и т ж (б — х, « — у, г' — г) — радиус-вектор, идущий от точки (х, у, г) к точке Я, «, 1). 153. Вычислить интеграл ) х~у йх+ бу+ гЫг, гце; = ((х, у, г) Е Иг; х + у ?л~, г = 0): а) непосредственно; б) используя формулу Стокса (в качестве поверхности В а "у»' ~1» "» " х-» — «'). г Р " исгти и иояожггтельном направаеннн. 1 6. Элементы векторного анализа 201 164. Применяя формулу Стокса, вычислить криволинейный интеграл у у Ыя+ я йу+ я 4я, 7 где -, — окружность, полученная в результате пересечения сферы Я = ((х, у, з) б Й х + уз+ яэ = а ) с плоскостью, заданной уравнением я+ у+я = О, пробегаемая против хода часовой стрелки. если смотреть с положительной стороны осн Оя.

166. Вычислить интеграл (яэ — уэ) йх+ (у — хэ) Ыу+ (г — ху) йэ, яюВ взятый по отрезку винтовой линии, заданной уравнениями х = асов р, у = амит, г = — т, от точки А = (а, О. О) до точки В = (а, О. Й). Прил~екал формулу Стокса, вычислить интегралы: 166. 1 = у(у+ г) зя+ (э+ х)Ыу+ (я+ у) Иг, где ", — эллипс. заданный уравнениями я = аз1п Г.

у = 2аз)п1созй г = асозэ Д 0 ( 1 ( т, пробегаемый в направлении возрастания параметра д г — уг(уэ — э) 1я Ф (яэ — яэ) 4у Ф (хэ — ут) Иэ, где ; — сечение поаертиостп куба К = ((х. у. з) б П~: О < с < а, 0 ( у ( а, 0 ( з < а] плоскостью, заданной уравнением э я+ у+ л = -а, пробегаемое против хода часовой стрелки, если смотреть с положительной г стороны осн Ох. ~ 6. Элементы векторного анализа 6.1. Скалярные и векторные поля. Если ка'кдой точке М пространства Й~, пг > 1, или некоторой области этого пространства поставлено в соответствие некоторое число у(М), то говорят. что задано скалярное поле 1 (например. поле давления в атлюсфере. поле плотности сплошного распределения массы в объеме 1Г и т. д.). Если каждой ~очке М пространства И~, ш ) 1, или области этого пространства поставлен в соответствие некоторый вектор п(М), то говорят, что задано векторное поле и (наприлгер, поле тяготения системы масс пли сплошного распределения лгассы в ограничениолг объеме, иоле плотности импульса, поле плотности тока, поле магнитных сил и т.

п.). 6.2. Плотность аддптпвной функции областей. Восстановление алдитнвной функции по ее плотности. Пусть Ф(К) — аддитивная функция компакта К, т.е. функция, удовлетворяющая усло- вию Ф(К, О К,) = Ф(К1) + Ф(Кэ) для любых двух компактов без общих внутренних точек.

Число гз(М) = йш Ф(К) к-вг рК Ф(К) = ~т(н) г*. к (2) где дЛ вЂ” ыера компакта К, называется плошиосглью Фрикико Ф в точке М б К. Если плотность гз(М) аддитивной функции областей Ф непрерывна или кусочно — непрерывна на компакте К, то Гл. 2.

Кратные п эгрнволиненные интегралы б.З. Дифференциальный оператор Гамкльтока. Пусть (ээ(М), и(М), ... ) — множество скалярных н векторных полей, имеющих непрерывные производные по всем координатам, и пусть Т(р! = Т(р; Р(М), и(М), ... ) — некоторое выражение, имеющее смысл скаляра или вектора, линейное относительно произвольного вектора р: Т(иэ р, + оэрг) = аэ Т! р, ) + аэТ(рэ), где оэ, аэ — произвольные действительные числа.

Пусть р т ау+ 61+ сй. Тогда, в силу линейности Т, имеем Т(р) = аТ(г) + !эТ(у) + сТ(й). (1) 202 Полагаем Т(~) = — Т(!) + — Т(Я+ — Т(й), ...д . д д дх ду дг (2) заменяя в (1) компоненты вектора р символами дифференцирования по 'х, у и г соответ- ственно.

Символ 1» (набла) называется дифференциальным оператором Гамильтона. В векторном анализе накболее важными выраженияьги Т, о которых упоминалось выше, являются: а) Т(Р! эо) = РР (эо — скалярное поле); б) Т(Р! и) = (Р, и) (скалярное произведение); в) Т(Р! и) = [Р, и] (векторное произведение). На основании (2) получаем: а) Т(ч) = 1тю т ~~~!+ олу'+ — "й; б) Т( ч) = (1т, и) = о + дд + —, если и = (Р, !г, Я); в) Т(Ч) = [гу, и] = — — — = ( — — — ) г+ ( — — — ) у+ ~ — — ) л.

о о о /оя оо'э . ог он ° Уоо ог1 о» оу о» ( зу 3» ! о э» ~о оу гэ' Р !г В Вектор в правой части а) называется градисноэол скалярного поля Р, Выражение в правой части б) называется расходияостью (пли диогрггнцигб) огкториого поля и. Вектор в правой части в) называется вихрем (или роторол) огкторного поля и.

бА. Пронзводнал скалярного полл по направлению. Градиент скалярного поля. Пусть ю — скалярное поле, определенное в области й С Н, т — гладкая кривая, лежащая э в й н проходящая через фиксированную точку Мо б й, г1 ! — длина дуги кривой от точки Мо до точки М. Если прн М Мо существует конечный предел отношения !ьэо(Мо) ю(М) — ю(Мо) г.'э! то он называется проиэеодиоб скалярного полаю в точке Мо вдоль кривой т и обозначается $(М,): дэ йш Р(М) — Э (Мо) (1) д! ы о гэ! Если функция ю дифференцируема в точке Мо, то ее производная вдоль кривой существует н для всех кривых, выходящим из точки Мо с одной и той же касательной т = (соя ау, соэдээ сов зэ), значение этой пРоизвоДной оДно и то же, а сама пРоизвоДнал называется проиэоодной по данному направлению т н вычисляетсв по формуле дэо — (Мо) = (бгад Р(Мо), т) = — (Мо) соз оэ + — (Мо) совА + — (Мо) соз гэ ° (2) дээ ду дэ» д! дх ду дг Вектор бгад ю(Мо) = фМо), одт(Мо), ф(Мо)) направлен из точки Мо в сторону быстрейшего возрастания скалярного поля Ьо, а его евклидова норма равна абсолютной величине производной пола эо в этом направлении.

на гяадэшй поверхности уровня Р(м) = с, с = сапог, касательная плоскость к поверхэюспэ в точке Мо ортогональиа вектору бгад Эо(Мо). 3 6. Элементы векторного апллпза гО3 6.3. Потенциальные векторныеполя. Цпркуллцпи векторного полл. Любое векторное лоле в, совпадающее с полем градиента некоторого скалярного поли р, называется попэонцвальиыя, а функцюо и называют в этом случае пощеициалоя коля и. Если вектор пола в имеет физический смысл силы, то нотенцнал и этого полл имеет физический смысл работы. Работа А силы в иа гладкой или кусочно-гладкой кривой т, соединяющей точку Мо с точкой Мы вычисллетсл по формуле А= (в, т)а1, ч где т — единичный касательный вектор к кривой ",.

В силу условия в = бгаа оо, из (1) получаем А = (бгай рц т) 61 = / — 61 = р(Мо) — р(Мо). Г ар д1 (2) мом1 Мо'М, т.е, работа силы иа пути МоМо равна разности потенциалов в точках Мо н Мо. Если в — произвольное непрерывное векторное поле, то интеграл по замкнутому контуру (в, т) а! называется циркуляцией поля и по контуру Ч. Пцркуллцнл непрерывного потенциального векторного поля в по всякому замкнутому контуру Т, лежащему в односвлзной области, равна нулю. Справедливо н обратное утвержде- ние: если циркуляция непрерывного векторного поля и равна нулю по любому замкнутому контуру 1, лежащему в односвлзной области, то поле и потенциально. 6.6.

Поток п расходпмость векторного полл. Пусть Я вЂ” конечная »ладках нлн кусочно-гладкая поверхность, в — векторное поле, заданное в области й, содержащей все точки поверхности Я. Выражение (3) ~', я - ф...> ба где и — единичный вектор нормали, характеризующий сторону поверхности, называется потоком поля и через поверхность Я. Вычисление потока лвллетсл линейной операцией. Если поверхность Я, ограничивающая область й, замкнута и при стлгивании области й в точку М существует конечный предел ю(и; 5) и-м рй где рй — жорданова мера множества О, то он называется раскоднмосчлою нли дивергенцией оекоаоркого поля и в точке М б й и обозначается й!ч в(М): 61ч в(М) = Ьа — д (и, и)НЯ.

Характеристики

Тип файла
DJVU-файл
Размер
2,6 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6430
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее