Anti-Demidovich (Lyashko I.I., i dr.). Tom 3. Kratnye i krivolinejnye integraly (2001)(ru)(T)(224s) (940508), страница 27
Текст из файла (страница 27)
-~р. п ,Гз з-зр то окончательно имеем 1 = 2Я Охи = гяйг . З» 2 и 202. — а р( + Ых, где у — заыкнугая кривая, заданная уравнениями 2. 1=~ у х ах+я * у х'у х = а сох з, у = асов 21, х = асов ЗГ, робегаемая в направлении возрастания параметра Г. Ч и нзм М = (х, х) пробегает часть кривой у ч П и изменении г от О до з подвижная точка М = (, у, 2 чкаМ ол жноы направлении — от точки М~ до к ~~А ~~им~о а«ладываются, н зта кривая ю часть к ивой т в протпвоположн и т чкн Ме. Таким образом, точки замкнутой крпвррй з взаимно накл пе ограничивает нпкаяой поверхности. Слсдоаател ио, 200 Гл.
2. Кратныен криволинейные интегралы Упражнения для самостоятелъной работы Прнл~еняя формулу Грина, вычислить криволинейные интегралы: 139. !=уху бу — х убх,где у=((х,у)ЕИг:хг+уг=а ). 140. 1 = у(х + у) йх — (х — у) Ау, где ", = ((х, у) Е Иг: -,т + улт = 1) . т 141. ? = у е ~» ег ~(соя 2ху ах+ зщ 2хуЫу), где т = ((х, у) Е Иг: ха + у = Аг). 7 142. Какому условию должна удовлетворять дифференцируеыая функция (х, у) Р(х, у), чтобы криволинейный интеграл Г(х, у)(убх+ хну) А»В не зависел от вида пути интегрирования? 143. Вычислить 1 = — у — ггт —, если Х = ах+ бу, У = ох+ бу и простой замкиутый аг-уах 2.
г хгег контур ", окружает начало координат (аб — бс ф 0). 144. Вычислить интеграл 1 (см. предыдущую задачу), если Х = р(х, у). ?» = 9(х. у) и простой контур ", окружает начало координат, причем кривые, определяемые уравнениями с»(х, у) = О и 0(х, у) = О, имеют несколько простых точек пересечения внутри контура т.
145. Вычггсл1гть площадь фигуры, ограниченной кривой т, заданной уравнением (х+ у)"+ + = ах"у, а > О. п > О, ил > О. 146. Доказатгч что объелг тела, образованного вращением вокруг осп Ох простого замкнутого контура;, расположенного в верхней полуплоскости у > О, равен К = —:г ~ уг бх. Применяя формулу Остроградского, преобразовать следующие поверхностные интегралы, если гладкая поверхность Я ограничивает конечный объем Н н соха, созб, соз;— направляющпе косинусы внешней норлгали и к поверхности Я: 14Т )')»хгЫуаг+ у 4»Ых+ гг бхбр 148 )) '" ~г'"»~'"' ао г г » +г +» 149.
Д' (ф соя о+ ф соз)? 4- фебу) ЫЯ. 5 150. Вычислить интеграл г' = ц х 4уйг+ уг Ыггбх+ г бх бу,где Я вЂ” внешняя с~арона г границы куба К = ((х. у, г) б Иг: 0 ( х ( а, О ( у ( а, О ~ (г ~ (а). 151. Найти объем тела Т. ограниченного поверхностью Я, аацапиой уравнениями г = асахи, у = вял е, г = -а+ а сох е, а > О, а > О, н плоскостямн х = О, г = О. 152. Доказать формулу щ — 'ге»»с = -' ц соя(т, и) ао, где Я вЂ” край компакта К, и — внешняя единичнал норыаль к поверхности Я в точке (с, «, с).
г = (б — х)г+(у — «)г+(ь — г)з и т ж (б — х, « — у, г' — г) — радиус-вектор, идущий от точки (х, у, г) к точке Я, «, 1). 153. Вычислить интеграл ) х~у йх+ бу+ гЫг, гце; = ((х, у, г) Е Иг; х + у ?л~, г = 0): а) непосредственно; б) используя формулу Стокса (в качестве поверхности В а "у»' ~1» "» " х-» — «'). г Р " исгти и иояожггтельном направаеннн. 1 6. Элементы векторного анализа 201 164. Применяя формулу Стокса, вычислить криволинейный интеграл у у Ыя+ я йу+ я 4я, 7 где -, — окружность, полученная в результате пересечения сферы Я = ((х, у, з) б Й х + уз+ яэ = а ) с плоскостью, заданной уравнением я+ у+я = О, пробегаемая против хода часовой стрелки. если смотреть с положительной стороны осн Оя.
166. Вычислить интеграл (яэ — уэ) йх+ (у — хэ) Ыу+ (г — ху) йэ, яюВ взятый по отрезку винтовой линии, заданной уравнениями х = асов р, у = амит, г = — т, от точки А = (а, О. О) до точки В = (а, О. Й). Прил~екал формулу Стокса, вычислить интегралы: 166. 1 = у(у+ г) зя+ (э+ х)Ыу+ (я+ у) Иг, где ", — эллипс. заданный уравнениями я = аз1п Г.
у = 2аз)п1созй г = асозэ Д 0 ( 1 ( т, пробегаемый в направлении возрастания параметра д г — уг(уэ — э) 1я Ф (яэ — яэ) 4у Ф (хэ — ут) Иэ, где ; — сечение поаертиостп куба К = ((х. у. з) б П~: О < с < а, 0 ( у ( а, 0 ( з < а] плоскостью, заданной уравнением э я+ у+ л = -а, пробегаемое против хода часовой стрелки, если смотреть с положительной г стороны осн Ох. ~ 6. Элементы векторного анализа 6.1. Скалярные и векторные поля. Если ка'кдой точке М пространства Й~, пг > 1, или некоторой области этого пространства поставлено в соответствие некоторое число у(М), то говорят. что задано скалярное поле 1 (например. поле давления в атлюсфере. поле плотности сплошного распределения массы в объеме 1Г и т. д.). Если каждой ~очке М пространства И~, ш ) 1, или области этого пространства поставлен в соответствие некоторый вектор п(М), то говорят, что задано векторное поле и (наприлгер, поле тяготения системы масс пли сплошного распределения лгассы в ограничениолг объеме, иоле плотности импульса, поле плотности тока, поле магнитных сил и т.
п.). 6.2. Плотность аддптпвной функции областей. Восстановление алдитнвной функции по ее плотности. Пусть Ф(К) — аддитивная функция компакта К, т.е. функция, удовлетворяющая усло- вию Ф(К, О К,) = Ф(К1) + Ф(Кэ) для любых двух компактов без общих внутренних точек.
Число гз(М) = йш Ф(К) к-вг рК Ф(К) = ~т(н) г*. к (2) где дЛ вЂ” ыера компакта К, называется плошиосглью Фрикико Ф в точке М б К. Если плотность гз(М) аддитивной функции областей Ф непрерывна или кусочно — непрерывна на компакте К, то Гл. 2.
Кратные п эгрнволиненные интегралы б.З. Дифференциальный оператор Гамкльтока. Пусть (ээ(М), и(М), ... ) — множество скалярных н векторных полей, имеющих непрерывные производные по всем координатам, и пусть Т(р! = Т(р; Р(М), и(М), ... ) — некоторое выражение, имеющее смысл скаляра или вектора, линейное относительно произвольного вектора р: Т(иэ р, + оэрг) = аэ Т! р, ) + аэТ(рэ), где оэ, аэ — произвольные действительные числа.
Пусть р т ау+ 61+ сй. Тогда, в силу линейности Т, имеем Т(р) = аТ(г) + !эТ(у) + сТ(й). (1) 202 Полагаем Т(~) = — Т(!) + — Т(Я+ — Т(й), ...д . д д дх ду дг (2) заменяя в (1) компоненты вектора р символами дифференцирования по 'х, у и г соответ- ственно.
Символ 1» (набла) называется дифференциальным оператором Гамильтона. В векторном анализе накболее важными выраженияьги Т, о которых упоминалось выше, являются: а) Т(Р! эо) = РР (эо — скалярное поле); б) Т(Р! и) = (Р, и) (скалярное произведение); в) Т(Р! и) = [Р, и] (векторное произведение). На основании (2) получаем: а) Т(ч) = 1тю т ~~~!+ олу'+ — "й; б) Т( ч) = (1т, и) = о + дд + —, если и = (Р, !г, Я); в) Т(Ч) = [гу, и] = — — — = ( — — — ) г+ ( — — — ) у+ ~ — — ) л.
о о о /оя оо'э . ог он ° Уоо ог1 о» оу о» ( зу 3» ! о э» ~о оу гэ' Р !г В Вектор в правой части а) называется градисноэол скалярного поля Р, Выражение в правой части б) называется расходияостью (пли диогрггнцигб) огкториого поля и. Вектор в правой части в) называется вихрем (или роторол) огкторного поля и.
бА. Пронзводнал скалярного полл по направлению. Градиент скалярного поля. Пусть ю — скалярное поле, определенное в области й С Н, т — гладкая кривая, лежащая э в й н проходящая через фиксированную точку Мо б й, г1 ! — длина дуги кривой от точки Мо до точки М. Если прн М Мо существует конечный предел отношения !ьэо(Мо) ю(М) — ю(Мо) г.'э! то он называется проиэеодиоб скалярного полаю в точке Мо вдоль кривой т и обозначается $(М,): дэ йш Р(М) — Э (Мо) (1) д! ы о гэ! Если функция ю дифференцируема в точке Мо, то ее производная вдоль кривой существует н для всех кривых, выходящим из точки Мо с одной и той же касательной т = (соя ау, соэдээ сов зэ), значение этой пРоизвоДной оДно и то же, а сама пРоизвоДнал называется проиэоодной по данному направлению т н вычисляетсв по формуле дэо — (Мо) = (бгад Р(Мо), т) = — (Мо) соз оэ + — (Мо) совА + — (Мо) соз гэ ° (2) дээ ду дэ» д! дх ду дг Вектор бгад ю(Мо) = фМо), одт(Мо), ф(Мо)) направлен из точки Мо в сторону быстрейшего возрастания скалярного поля Ьо, а его евклидова норма равна абсолютной величине производной пола эо в этом направлении.
на гяадэшй поверхности уровня Р(м) = с, с = сапог, касательная плоскость к поверхэюспэ в точке Мо ортогональиа вектору бгад Эо(Мо). 3 6. Элементы векторного апллпза гО3 6.3. Потенциальные векторныеполя. Цпркуллцпи векторного полл. Любое векторное лоле в, совпадающее с полем градиента некоторого скалярного поли р, называется попэонцвальиыя, а функцюо и называют в этом случае пощеициалоя коля и. Если вектор пола в имеет физический смысл силы, то нотенцнал и этого полл имеет физический смысл работы. Работа А силы в иа гладкой или кусочно-гладкой кривой т, соединяющей точку Мо с точкой Мы вычисллетсл по формуле А= (в, т)а1, ч где т — единичный касательный вектор к кривой ",.
В силу условия в = бгаа оо, из (1) получаем А = (бгай рц т) 61 = / — 61 = р(Мо) — р(Мо). Г ар д1 (2) мом1 Мо'М, т.е, работа силы иа пути МоМо равна разности потенциалов в точках Мо н Мо. Если в — произвольное непрерывное векторное поле, то интеграл по замкнутому контуру (в, т) а! называется циркуляцией поля и по контуру Ч. Пцркуллцнл непрерывного потенциального векторного поля в по всякому замкнутому контуру Т, лежащему в односвлзной области, равна нулю. Справедливо н обратное утвержде- ние: если циркуляция непрерывного векторного поля и равна нулю по любому замкнутому контуру 1, лежащему в односвлзной области, то поле и потенциально. 6.6.
Поток п расходпмость векторного полл. Пусть Я вЂ” конечная »ладках нлн кусочно-гладкая поверхность, в — векторное поле, заданное в области й, содержащей все точки поверхности Я. Выражение (3) ~', я - ф...> ба где и — единичный вектор нормали, характеризующий сторону поверхности, называется потоком поля и через поверхность Я. Вычисление потока лвллетсл линейной операцией. Если поверхность Я, ограничивающая область й, замкнута и при стлгивании области й в точку М существует конечный предел ю(и; 5) и-м рй где рй — жорданова мера множества О, то он называется раскоднмосчлою нли дивергенцией оекоаоркого поля и в точке М б й и обозначается й!ч в(М): 61ч в(М) = Ьа — д (и, и)НЯ.