Главная » Просмотр файлов » Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s)

Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504), страница 58

Файл №940504 Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (Антидемидович) 58 страницаAnti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504) страница 582013-09-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 58)

Пусть Ро = гтя б С ~(з = ге™, -л < уо < л, г > 0), То(я) = т/ге ~, — л < уо < л, Рз = Тл б С ~ з = ге™, з < Зо < зл, г > 0), Тз(х) = т/ге з о Т < )о < з ' $1. Освовыые повгтыя. Аваяитьтеское продолзкеыие вдоль пути 233 Элемент Р, = (Рь, (,) определяет в г-гиоскости с разрезом вдоль отрицательной действительной полуоси функцию ~,, аналитичность которой следует из таких рассухсдений. Очевидно, что ш' = У,'(л) = гене = г, тлк что уь(з) = чью Поскольку ~, дает однолистное отображение области 23, на правую полуплоскость плоскости т, то существует г'(г) чз Е Р~ и эту производную можно найти по правилу дифференцирования обратной функции: 1 1 ! Л(з)= —., = — = — 2т 21'г(я) Таким образом, функция У, аналитическая в области Р,.

Аналогично убеждаемся в том, что Рз = (Рг, Зз) также является аналитическим элементом. Пересечение 2)~ О Рз ~ Я состоит из двух связных компонент Ь, и Ьг, представляющих собой соответственно второй и третий квадранты г-плоскости. Из определения функций У, и зг следует, что при з Е Ь~ ~~(з) = зз(з) и /~(з) е- Уг(г), есяи з Е Ь,. Следовательно, элементы Р, и Р, являются аналитическими продолжениями друг лруга через второй квалрант Ь,. Определеыие 4. Элементы Р = (В, У) и (2 = (6, д) явяяются аналитическцьщ продолжениями друг друга через области Ь, (и = О, п — 1), если существует такая цепочкаэлеиентов Р, = (В„, у,) (и = О, и), что: 1) Рь = Р Р = !'ь; 2) области 2), и 2) ь~ имеют непустое пересечение и Ь, является одной из коипонент этого пересечения; 3) элемент Рею является непосредственным аналитическим продолжением элемента Р„че- резЬ . Пусть, например, В = (л Е С ~ г = ге', — — < р < г, г > 0), У(з) = чгге г, — г < 'г < г, С=(гЕС~ =веге, з <Р< г, г>0), з(г)=илге г, г <(э< Как н в примере 1, устанавливаем, что пары Р = (2), у) и () = (С, р) являются аналитическими элементами.

Попочка элементов Р,, Рц Рз, где Рь — — Р, Р, = (3, а Р, = (2)н /,) определяется равенствами *к 2)~ = (л Е С ~ з = ге ~, 0 < уь < к, г > 0), у>(з) = чг е* г, О < )з < я показывает, что элементы Р и гд являются аналитическими прслолжениями друг друга в смысле опрелеления 4. При этом Ь, —,первый квадрант, а Ь, — второй квадрант з-плоскости. Для простоты последующих рассуждений конкретизируем понятие анатитического элемента. Определеыие 5. Каноническим элементом с центром в точке а Е С назовем нару Р = (Кя„, з ), где з — сумма сходящегося степенного ряда, а Кл.

— круг сходимости этого ряда с центром в точке л = а: Кя, =(зЕС;~л — а~<В ), у (л)= ~ с„(з — а)". =ь Круг Кя. называется кругом сходимости элемента Р . Приведенные выше определения 3 и 4 для канонических элементов упрощаются, так как их области (круги) всегда пересекаются по связным множествам, и поэтому нет необходимости оговаривать, через какие компоненты пересечения Ь„совершается продолжение. Рассмотрим еще несколько моментов, связанных с понятием канонического элемента.

1) Пусть Р = (Кл., у ) и Рь — — (Кль, )ь) — два канонических элемента, являющихся непосРелственным пРодолжением дРУг дРУта, и пУсть Ь Е Хл . Тогда, очевидно, пРодолжение элемента Р сводится к переразложению суммы степенного рыла У в ряД по степенЯм з — Ь: ~ь(л) = '~, -', ~.'"ь(Ь)(л — Ь)". (1) =ь Гл. б. гьнваитическое продпюкевве 234 2) Если два канонических элемента Р, и Рь являются непосредственным продолжением друг друга, то их круги К„ и Кл„не могут компактно принадлежать друг другу. Действительно, пусть, например, Кн, С Кл зь Е А(Кя,) и ~ь = ~ в Кл„, однако 1 Е А(Хл.). Отсюда получаем, что функциа Ть аналитическаЯ в большем кРУге, чем Хл„, и, таким образом, Хл, не может быть кругом сходимости.

Из последнего утверждения следует, что кривые дКя. н дКл, обязательно имеют общую точку, и справедливо неравенство (см. рис. 84) (й — К ~ ( (ь — а(. (2) Реь. ал 3) Пусть элементы Рг, и Р„являются непосредственным аналитическим продолжением одного и того же элемента Р.. Тогда Ры = Ры. Действительно, пусть Вы ( Вьз. Тогла функции Ты и 1ьз анатитическне в круге Кды и совпадают в нем, поскольку 1ы =,Г, и 1ьз —— 1 на пересечении Кл. Г) Кяы.

Теперь очевидно, что Вы — — Вьз и, следовательно, Ры —— Рки 1.2. Аналитическое продолжение вдоль пути. Пусть Р, = (Кя„ур) — канонический элемент с центром в точке г = о, ч — непрерывная жорданова кривая с параметрическим прелставлением )с, 23 = 1 = (О, 1) и началом в точке р(0) = о, Г = ('у, Т,р). Определение. Канонический элемент Рь аналитически продолжается вдоль кривой(пути) Г, если существует семейство элементов (Р ) е г —— ((Хп,, Уг)) с центРами в точках о, = чз(1) и ненуле- )шг выми радиусами сходимости, удовлетворнющее условию: для казкдой окрестности 0;, точки гь Е 1, уг(Ом) С Кн, ю ч( Е Ои элемент Р, является непосредственным аналитическим продолжением 'ь элемента Р,, Если канонический элемент Рь продолкаем вдоль пути Г, то говорят, что элемент Р~ с центром в конечной точке (з(1) = б получен из Р, аналитическим продолжением вдоль Г.

Следующая теорема устанавливает единственность аналитического продолжения вдоль пути. Теорема 1. Если канонический элемент Рь продолжить вдоль пути Г, то полученныи в результате его аналитического продолзкения элемент не зависит от выбора семейства, осуществляющего зто продолжение. щ Применим метод доказательства от противного.

Пусть Р, — эяемент, полученный из Рь продолжением вдоль пути Г с помощью семейства Р„а (), — элемент, полученный из Р, продолжением вдоль Г с помощью семейства Ог. Имеем Рь — — ()ь, Рассмотрим множество точек 1 из интервала 1, для которых Р, = (;1,: Е = (1 Е 1 ~ Р, = <;)г).

Очевидно, Е ~ а, поскольку 1 = 0 Е Е. Покажем, что Š— открытое мнолсество. Пусть (ь Е Е: Рь, — — 0и Обозначим через Ои С 1 такую окрестность точки гь, что Р(0„) С Кя,, 'а ' где Кл, — общий круг сходимости элементов Ри и г'„)и Тогда 'у( Е Ои элементы Р, и гй, получаются непосредственным аналитическим продолжением одного и того же элемента Ри = (2м Отсюда Р, = гйг (см. замечание 3, п. 1.1), т.е. О„С Е и .Š— открытое множество. Теперь докажем, что Š— замкнутое множество в топологии 1. Пусть гь — предельная точка множества Е. Обозначим через Кл, меньший из кругов сходимостн элементов Рм и Ои, и пусть Ои — такая окрестность точки 1,, что (о(Оы) С Кя, .

Поскольку гь — предельная точка множества Е, то в окрестности Ом обязательно найдется точка 1, Е Е и, следовательно, Рп = геь, Б силу замечания 3, п. 1.1, имеем Р,„= г2м, т. е. 1, Е Е и Š— замкнутое множество. Таким образом, непустое множество Е, являющееся подмножеством множества 1, одновременно открыто и замкнуто в топологии 1, Поэтому .Е = 1 (см. теорему в 3, гл. 2) и, в частности, Р, = О, . ~ Нас будет интересовать следующий вопрос. Мы имеем определения аналитического продолжения вдоль цепочки элементов (определение 4, п. 1.1) и определение аналитического продолзкения вдоль пути. Как они связаны между собой? 235 и 1. Основные понятия.

Аналитическое продолвгевие вдоль пути Лемма. Пусть В(1) — радиус злеиента Р, из семейства элементов, осуществляющего аналитическое продолжение вдоль жарданава пути Г, и пусть, далее, все круги Кл, имеют конечные радиусы схадимпсти. Тогда )2(1) — непрерывная функция на отрезке 1 = [О, 1). т Пуетв го Е 1 — ЛЮбая тОЧКа. Сущветлувт таКая ОКрЕСтНОСтЬ ОП ТОЧКИ гв, Чта Чг Е ОЫ элемент Р, является непосредственным аналитическим продолжением элемента Р,, Согласно неравенству (2), и.

1.1, имеем [В(1) — В(гь)[ < [)г(1) — Фгь)[ гле зг — параметрическое представление жордановой кривой Г. Поскольку отображение (е непрерывное, то В(1) является непрерывной функцией на сегменте 1. т Теорема 2. Пусть элемент (д получен из элемента Р посредствам аналитического продолжения вдоль жарданава пути Г. Тагди ('„З является аналитическим продолжением в понимании алределенив 4, л.

1.1. т Пусть (Р,),е, — семейство элементов, осуществляющее аналитическое продолжение вдоль кривой Г (Рь = Р, Р, = Д). Радиус семейства В(1) является непрерывной функцией на сегменте 1, и )Г( б 1 В(1) > О. Огсюда слелует, согласно свойству непрерывных функций, что 'чг б 1 В(1) > е для некоторого г > О. Поскольку параметрическое представление ьг жордановой кривой Г есть равномерно непрерывная функция на сегменте 1, то существует такое разбиение П= [гь1 к=О и) сегмента1, где О=ге <гз « ... 1„=1, что М(г ) — Т(г — )[<г (Ь= » ). Тогда (е(гь) Е Кл „, и, согласно определению 3, и.

1.1, элементы Р иь~ н Р пь а являются непосредственным аналитическим продолжением друг друга, а элементы Р = Р оа и гд = Р „„; — аналитическим продолжением друг друга вдоль цепочки элементов Р пь. (й = О, гь), т.е. элемент (,> является аналитическим продолжением элемента Р в смысле опредеяения 4, п.1.1. М Рассмотрим, например, семейство элементов Р~ = (Клин геь), 1 Е 1 = [О 1[, где Кла~=[еЕС;[г — е' '[<1), уь= чгге'", — г+хг<(е<з рвг.

Очевнано, и" = 1,"(г) = г, поэтому в каждой точке г Е К,ио сушествуег 1,'(г) = и 1,'(г) ос при г О. Получаем, что функция 1, аналитическая в круге Кщо. Представляя ее рядом Тейлора в окрестности точки е' ', получим степенной ряд с кругом сходимости Кщп. Таким образом, элементы Р, = (Клон у,) при 1 Е [О, Ц образуют семейство канонических элементов„осуществляющее аналитическое продолжение элемента Р, в элемент Р, вдоль полуокружности 7 = (г 0 С [ г = е' ~, 0 < 1 < 1). Очевидно, элемент Р~ можно также получить из элемента Рь анатитическим продолжением с помощью цепочки элементов Рь, Р1, Р,. 1.3. Иввариаитиость аналитического продолжения вдоль пути относительно гомотоппых деформаций этого пути. Пусть 1 = [О, 1[, К = 1х1, К С вЂ” гомотопия жордановой кривой -Гь вжорданову кривую 7~ еь еь с общими началом и концом, 1 уа 1 — 7, — параметрические представления кривых 7ь на на и 7ъ Тогда чс Е 1 ю(0, О = (вь(0), (е(1, 1) = юе(1), т.е.

любая кривая 74 с параметрическим прелставлением б ьч Зг(1, 4) имеет то же начало, что и Ть с 7~ и тот же конец, что и 7ь с 7~ (см. п.5.1, гл.4). Теорема 1. Пусть гкарданавы кривые 7ь и 7~ гамотапны как кривые с общими концами, а элемент Р аналитически лрадаллеаетсв вдаль любой кривой 74 с параметрическим представлением б ' ' Р(1~ О 0 < 1 ~< 1, где и — гвматалия кривой 7е в кривую 7~ . Тогда результаты аналитическагв прадацкенил элемента Р вдоль кривых Гь и Г~ совладают, где Го = (7ь, 7ь ). Г~ =<7~ 7т ) м Согласно условию, аналитическое прололжение элемента Р вдоль любой жордановой кривой Гг, имеющей общие концы с кривыми Гь и Г,, существует. Обозначим через (гг результат аналитического прололжения, осуществляемого семейством элементов (Рь )ьег вдоль нуги 236 Гл. б.

Аналитическое продолжение Гг = (ТГ, Тс ). ПУсть Е = (с Е Х ( Я~ = (Г ). Множество Е непУстое, так как Р = О Е Е. ПУсть 4ь Е Е. По лемме п. 1.2 существует такое с > О, что радиусы Л(г) семейства элементов (Р,'),аг, осуществляющего аналитическое продолжение вдоль кривой Гг„удовлетворяют (Г( Е 1 неравенспзу 22(1) > с. Поскольку гомотопия (с является равномерно непрерывным отображением на компакге К, то в К найдется такая окрестность 0(„С 1, что )г(Е Е 0(„1 Е Х) выполняется неравенство )(э(б, 1) — ы(1„1)) < —. 2 (1) Выберем точки (ь Е 1 (й = О, и) так, чтобы ч)» )»гь = )э(бь, гь) удовлетворяли неравенству (2) !~уь — Уа-~1< —.

Характеристики

Тип файла
DJVU-файл
Размер
4,7 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее