Anti-Demidovich (Boyarchuk A.K.). Tom 4. Funkcii kompleksnogo peremennogo (2001)(ru)(T)(365s) (940504), страница 57
Текст из файла (страница 57)
В. 34. Определить характер точки « = со для следующих функций: + 4 1, 2 -2* 2 2 а); б)«соз —; в) «е 24+ 2 м Полагая « = —, получим: 2 С' «2+2 (~(1-1-2( ) 4 1 соа( «соз — = «!е+ 2 1+ 2('!е ' « ~4 а) Точка (' = О является нулем восьмого порядка функции (; -мй, следовательно, точка « = со — нуль восьмого порядка заданной функции. 6) Точка Г = Π— полюс четвертого порядка функции б 4-4 — 4, поэтому точка « = со является полюсом четвертого порядка для данной функции.
в) Разлагая заданную функцию в степенной ряд, получим 42 «'е * = ~~4 (-2)" =е Таким образом, « = оо — существенно особая точка функпин «4 «'е . ь 35. Пусть степенной ряд ~ ~' а„«" имеет своим кругом сходимости единичный круг, и на окружности т = («Е С: («( = 1) его сумма у не имеет никаких других особенностей, кроме полюсов первого порядка. Доказать, что последовательность (а„) ограничена. М Так как сумма / ряда имеет на окружности .! своими особенностями лишь простые полюсы, то этих полюсов может быть лишь конечное число, поскольку в противном случае у имела бы на границе круга сходимости и неизолированную особую точку.
Обозначим этн полюсы через «,, (у = 1, п«) и рассмотрим функцию Тогда 2 1) «3 »4;(4 '-'.„' .4.)4» 4.4» =4 2=! а„«" =е Отсюда получаем 4ун > О: )а ) < ) (с«1+(Ь„) ~ (М = сова!. 1ь 2=2 а„= (-1)" — „, +Ь„, С« « р() = 7( )-~' 2=! где;-~ — — главная часть ряда Лорана функции 7 в окрестности точки «„(у = 1, т). Каждая точка «, является для функции )2 правильной, вследствие чего (е аналитическая как внутри круга К = («б С: )«( < 1), так и на окружности у, т.е. в некотором круге Кл, В > 1. Поэтому справедливо представление т(«) = ~~2 2 + ~~4 Ь„«", где 1нп 224(Ь„! < 1.
=е 2ЗО Гл. 5. Ряды авалвтнчесвих функций. Изолированные особые точки 12. Доказать, что если функция у(«) = ~ , 'а «" является аналитической в круге К = (« б С: =о !4 < 1) и непрерывна на окружности у = («б С: )«! = 1), то рял ',) /а„!~ сходится. 13. Пусть а Ф О. Найти области схсдимости следующих рядов Лорана: а) 2 а «"=~,а«"+~,'а "« "; б)~,а "«"=~ а "«"+~ а "« "; в) ') а !м«" =~ а "«" +~ а-"«-".
14. Найти разложения в ряды Лорана в соответствующих областях по степеням « — «е следующих функций: а)« — *, «»=1; б)« -соз-г+ — *, «»=О в)« —,-' — «»=О 15. Разложить в ряды Лорана в указанных областях следующие функции: а) «! -,,!»!т;у — и при 1< ~«( <2; б) «!-»,—,! От! — г — !при ф > 2; в) «с!8«приО< ~4 <»г; г) «! с«8 «при х < )«) < 2»г. 16. Показать, что при всех «: О < !4 < со » ! а) сЬ («+ —,') = а» + ~ а„(«" + — '„), где а„= — ' 1» сЦ2 со« В) соз пВ г(В; » 2 б) е «*' = ~ а„«", где а„= — ',„( соз(сйиВ(1 — со«В) — пВ)е'~~~~' юВВ. о 17. Показать, что область сходнмости ряда ~ — „,', „состоит нз внутренности и внешности единичной окружности, и что в каждой нз этих частей ряд представляет одну функцию.
18. Определить характер точки « = О для следующих функций: ! »» * 3 «» 2* а) е *; б) — ' — т', в) (е* — 1 — «)сгй «; г) в!з-г — г, д) е '-*. »»-.» — * »0!*-!!--* 2 19. Определить характер точки « = со для следующих функций: ,а „! »,, »2 а) — *,; б) соз« вЂ” ип«; в) -т; —, г) -т' — -»!. 20. Найти особые точки следующих функций; 21. Пусть сумма 1 степенного ряда ~ , 'а„«" имеет на границе круга сходнмости только одну особую точку «» — простой полюс. Показать, что в этом случае ча- — «» и, следовательно, !" — ~ -! Я, где Я вЂ” радиус сходимости ряда. 22.
Доказать, по когда точка « = а является существенно особой точкой функции 1, то она остается существенно особой точкой и для функции «Р(1(«)), где Р(гз) — многочлен (Р(ы) ~ сопя!). 23. Доказать,что функциональное уравнение У(«) = ((й«), « Ф 1, не имеет решений, аналитических в точке « = О и отличных от тожлественной постоянной. 24. Пуси радиусы сходимости рядов ~,'а„«" и 2 Кеа»«" равны единице и Кеа» > О 'чл б Е». Доказать, что точка « = 1 является особой для сумм этих рядов.
25. Пуси функция 1 — аналитическая в области г» за исключением конечного числа полюсов и А б С. Доказать, что функция «» 7Яз)2 (логарифмическая производная функции У вЂ” А) имеет простые полюсы во всех полюсах функции у и во всех А-точках этой же функции н не имеет никаких других особых точек. Глава б Аналитическое продолжение Анализ ическое продолжение является одним из основных и важных понятий комплексного анализа. Оно позволяет лучше понять природу функций комплексного переменного и наиболее естественно определить многозначные анкштические функции.
Выясним, какие данные являются достаточными для определения аналитической фргкции во всей области ее существования, и как по этим данным можно построить аналитические выражения, определяющие функцию в этой области. В случае целой рациональной функции степени и достаточно знать ее значения в и+1 точках, чтобы определить ее на всей плоскости. Дги определения дробно-линейной функции, являющийся отношением двух целых много- членов степени ш и и, достаточно задать пг+ и Ч- 1 ее значений.
Но уже в случае целой трасценцентной функции недостаточно задать ее значения даже на бесконечном множестве дискретных точек. Например, условие Г(з) = О при з = йл ()е Е Х) может относиться к функциям г(з) = О, г(з) = йпз, г(з) = Аз(па, А = сопзг, В случае целой трансценденпюй функции достаточным является, например, задание значений функции и ее производных всех порядков в любой точке з,, поскольку по этим данным можно построить степенной ряд Е~"(" ' „", сходящийся во всех точках плоскости и, таким образом, опрелеляюший в ней функцию 7. Для определения функции, аналитической в замкнутой области, достаточно, согласно фор- муле Коши, знать ее значения на контуре. Для определения непрерывной функции недостаточно знать даже все ее значения в какой-то области.
Например, функцию [а, б[ Н можно продолзкить за сегмент [а, Ь[ неограниченным У количеством способов, не нарушая при этом непрерывности функции. Рассматривая класс аналитических функций, который вылеляется из совокупности всех не- прерывных функций требованием их дифференцируемости в области„мы увидим, что он имеет такое свойство, которое позволяет определить аналитическую функцию во всей области ее суше- ствования, зная: а) "элемент" этой функции, т. е.
степенной ряд У (зе) (2 — зе) , определяющий ее в круге сходимости, или б) значения этой функции в как угодно малой области, или, наконец, в) значения ее на как угодно малой дуге некоторой кривой. После установления этого обстоятельства естественно поставить вопрос о том, как, имея аналитическую в некоторой области Ю функцию у, расширить область определения функции, т. е.
построить новую область, содержащую обласп П, и определить в ней такую аналитическую фуикшпо, сужение которой на область Р совпадало бы с 7. Такое расширение области определения аналитической функции называется процессом ее аналитического продолжения, а полученное при этом аналитическое выражение, определяющее функцию в новой области — ее аналитическим продолжением. Необходимость такого расширения области определения функции возникает, напРимер, при нахождении Решенгш дифференциального уравнения в виде ряда, сходящегося внутри некоторого круга.
232 Гл. 6. Аналитическое продолжение ф 1. Основные понятия. Аналитическое продолжение вдоль пути 1.1. Свойство единственности аналитической функции. Определение аналитического продолжения. Теорема. Если функция У аналитическая в некоторой области Р и обращается в нуль в некоторой ее чаопи Р,, та У ев 0 ва всей области Р. Ч Допустим, что З отлична от нуля в точке з = Ь той части области Р, которая лежит вне области Рь Соединим эту ® точку с любой точкой а б Р~ некоторой кривой Т, лежащей в Р (рис. 83). 12 Ь На некоторой дуге этой кривой„примыкающей к точке а, у(з) = О, а на некоторой дуге, примыкающей к Ь, Т(з) р О. о Тогда существует такая точка ао б у, что ОУз б аз, з(з) = О, а на луге зоЬ есть точки, как угодно близкие к ло, в которых У(з) ф О. Поскольку функция У непрерывная, то должно выполняться равенство У(ло) = О, т.е.
зо является неизолированным нулем функции Т. Зто посяеднее обстоятельство возможно лишь тогда, когда разложение функции Т в ряд Тейлора у о.аз в окрестности с центром в точке ло тождественно равно нулю. Но тогда У( ) буде~ равно нулю Гч и на некотором отрезке дуги л,Ь, примыкающем к точке зо, что невозможно в силу свойства точки зо. ь При доказательстве теоремы можно бьшо бы ограничи~ься требованием, чтобы функция У обращалась в нуль на некоторой кривой, лежащей в Р, поскольку тогда она обращается в нуль и в некотором круге с центром в олной из точек этой кривой. Следствие. Если две функции Т~ и Ут, аналитические в некоторой области, принимают оди- наковые значения на некоторой части этой области или на отрезке кривом, лелсащей в аблистщ та з1 = зз ва всей области. Таким образом, задание элемента функции, аналитической в неко.
горой области, или, вообще, задание ее значений в как угодно малой области или на кривой, а также на бесконечном множестве точек, имеющем огредельпуоо точку, полностью определяет функцию в области ее аналитичности. Определение 1. Пусть функция то определена на некотором множестве М С С. Акал ит и ч еским продолжением функции То в область Р 3 М называется аналитическая в области Р функция у, сузкенис которой Ям — — то. Примеры: 1) Ь(х) = е*, М = 22; З(з) = е* = е' соху+ ое' з1п у, Р = С; 2) Уо(з) = ~ з, М = (з б С:!4 < 1); ((л) = —,',, Р = С~(1).
=о Расширим понятие аналитического продолжения. Определение 2. Аналитическим элементом Р называется упорядоченнаяпара Р = (Р, (), состоящая из области Р С С и аналитической в этой области функции у. Определение 3. Два аналитических элемента Р, = (Рн У,) и Рз — — (Рз, Уз), обнести которых удааоетваряют условию Р, гт Рт ~ а, явлюатся непосредственным аналитическим продолжением друг друга через область гь — связную компоненту множество Р~ го Рз, если везде в ьь 7, = Уз. Заметим, что значения функций то и Зз в дРУгих связных компонентах пересечения Р, ГЗ Рз не обязательно доллсны совпадать. Пример 1.