RADON (932350)
Текст из файла
Мера Радона
Определение. Семейство T подмножеств множества X образует его топологию, если оно содержит пустое множество, само X, сумму любого числа
Ак и пересечение
Ак конечного числа своих подмножеств. Топологическим пространством называется пара (Х, Т), т.е. X с заданной в нем топологией Т. Будем обозначать это пространство через Т.
Задать топологию в X – это значит указать те подмножества, которые считаются в X открытыми. Множества Т \ A, дополнительные к открытым, называются замкнутыми множествами топологического пространства Т. Поскольку X и пустое множество дополняют друг друга, то они одновременно открыты и замкнуты.
Пусть во множестве X заданы две топологии: Т1 и Т2. Топология Т1 сильнее топологии Т2 , если система множеств Т1 содержит систему множеств Т2, т.е. Т1 Т1.
Е
сли заданы две системы окрестностей A1 и A2, то топология, определенная системой A1, сильнее топологии, определенной системой A2, тогда и только тогда, когда они различны и каждая окрестность A2 содержит некоторую окрестность A1.
Множество, открытое в слабой топологии, тем более открыто в сильной. В совокупность всех возможных топологий в X можно ввести частичную упорядоченность Т1 Т2
Т3
...
Т. В этой последовательности есть максимальный элемент Т1 – топология, в которой все множества открыты (например, в произвольном множестве X можно ввести топологию положив открытыми все его подмножества), и есть минимальный – топология Т, в которой открыты только X и пустое множество (например, в произвольном множестве X можно ввести топологию, считая открытыми только X и пустое множество: это пространство «слипшихся» точек, в котором замыкание каждого непустого множества есть все X).
Если учесть, что окрестностью точки x Т называется всякое открытое множество A
Т, содержащее x, то из самого определения топологического пространства следует, что для того чтобы множество в Т было открытым, необходимо и достаточно, чтобы оно содержало некоторую окрестность каждой своей точки. Тогда, переходя к дополнениям в определении топологии, получаем, что сумма конечного числа замкнутых множеств замкнута и что пересечение любого числа замкнутых множеств замкнуто. Замыканием
множества A называется пересечение всех замкнутых множеств, содержащих A. Замыкание множества A состоит из изолированных точек этого множества, из предельных точек, не принадлежащих A. Напомним, что точка x
X называется предельной точкой множества A
X, если любая ее окрестность содержит бесконечно много точек из A, причем сама точка x может не принадлежать A. Точки из
, не являющиеся внутренними для A, образуют границу множества A.
Можно определить топологическое пространство как множество, на котором задана операция замыкания. Тогда если в X заданы две топологии Т1 и Т2, то Т1 сильнее Т2 тогда и только тогда, когда замыкание всякого множества в топологии Т1 содержится в его замыкании в топологии Т2 .
Определение. Семейство называется системой образующих топологии Т, если Т есть слабейшая из топологий, содержащих
( Т
).
Пересечение произвольного множества топологий Т’ = Тк в X есть топология в X, которая является наиболее слабой среди топологий Тк .
Если - произвольная система подмножеств множества X, то существует минимальная топология Т в X, содержащая
(в этом случае
является системой образующих топологий Т).
Обычно удобно задавать не совокупность всех открытых в X подмножеств, а некоторую определяющую систему подмножеств, по которой можно построить любое из заданных открытых множеств посредством операций, входящих в определение топологии. Например, на прямой открыты лишь те множества, которые могут быть представлены в виде суммы некоторого числа интервалов. Это приводит к определению базы или базиса топологического пространства.
Определение. Семейством открытых подмножеств из X называется базой, или базисом топологического пространства Т, если
Т и всякое открытое множество из Т может быть представлено как сумма некоторого числа множеств из
.
Теорема. Чтобы система открытых множеств { Xк } была базой топологического пространства Т, необходимо и достаточно, чтобы для каждого открытого множества A и каждой точки x
A нашлось бы такое множество Xк из этой системы, что x
Xк
A, т.е. чтобы любую точку из произвольного открытого множества A можно было окружить окрестностью Xк
A и Xк
.
Определение. Если Y X и Т – некоторая топология в X, то топология Ту = { A: A = B
Y, B
Т } называется топологией пространства Y, индуцируемой топологией пространства X, или относительной топологией в Y.
Подмножество в Y называется относительно открытым, если оно открыто в топологии Ту ; относительно замкнутым, если его дополнение в Y относительно открыто.
Топологию во множество X можно ввести многими способами. Один из них, наиболее плодотворный, основан на введении понятий метрики.
Определение. Пусть X – некоторое множество и - вещественная функция на произведении X * X, обладающая следующими свойствами:
2) (х, y) = 0 в том и только том случае, если x = y ;
4) (х, y)
(х, z) +
(z, y) (неравенство треугольника).
Функция называется метрикой или метрической функцией пространства X.
Метрическая топология в X – это слабейшая из топологий, содержащих сферы (шары) вида: S ( x, a ) = { y / (х, y)
a }, где точка ч называется центром, а а – радиусом сферы. Метрическое пространство X оказывается топологическим пространством, если на базу окрестностей каждой точки x
X принять совокупность всех открытых шаров с центром в x. В этом случае говорят, что топология в X определена метрикой
(х, y). Множество X с определенной в нем метрической топологией называется метрическим пространством.
Топологические пространства – это весьма общие пространства. В них могут встречаться ситуации, не имеющие места, например, в метрических пространствах. Например, в топологическом пространстве конечное множество точек может не быть замкнутым. В связи с этим представляет интерес выделить из топологических пространств такие, которые близки по свойствам к метрическим. Для этого надо не топологическое пространство наложить дополнительные ограничения. В качестве таких ограничений вводят, например, аксиомы отделимости:
Т1) множество, состоящее из единственной точки, замкнуто;
Т2) у любых двух несовпадающих точек x и у существуют непересекающиеся окрестности Ох и Оу ;
Т3) для любого замкнутого множества A и произвольной точки x А существуют непересекающиеся окрестности;
Т4) у любых двух непересекающихся замкнутых множеств A и В существуют непересекающиеся окрестности.
Топологическое пространство, обладающее свойствами Т1) и Т2), называется хаусдорфовым. В анализе редко встречаются пространства более общие, чем хаусдорфовы.
Топологическое пространство, обладающее свойствами Т1) и Т3), называется регулярным, а пространство, обладающее свойствами Т1) и Т4) называется нормальным. Почти все встречающиеся в анализе пространства являются нормальными. Всякое нормальное пространство регулярно, а регулярное хаусдорфово, но не наоборот.
Наиболее плодотворным для анализ оказались пространства, несколько более узкие, чем регулярные, но более широкие, чем нормальные, введенные А.Н.Тихоновым и получившие название вполне регулярных.
Определение вполне регулярного пространства основано на следующей аксиоме функциональной отделимости: два непересекающихся замкнутых множества A и В функционально отделимы в пространстве X, если существует определенная на всем X непрерывная функция 0 f(x)
1, равная нулю во всех точках множества A и равная единице во всех точках множества В.
Вполне регулярным называется функционально отделимое Т1-пространство.
Особая роль вполне регулярных пространств проявляется в следующем. Урысоном было показано, что существуют регулярные пространства, на которых не существует каких-либо непрерывных функций, за исключением постоянных; в то же время незначительное усиление регулярных пространств до класса вполне регулярных позволило установить, что на любых вполне регулярных пространствах имеется достаточно много непрерывных функций. Еще одно замечательное свойство вполне регулярных пространств состоит в том, что они, наряду с хаусдорфовыми и регулярными, являются наследственными в том смысле, что любые из подмножества являются пространствами того же типа. Для нормальных пространств свойство наследственности удовлетворяется только в отношении замкнутых подмножеств (т.е. замкнутые подмножества нормального пространства нормальны).
Всякое метрическое пространство нормально (тем самым автоматически оно является и вполне регулярным, и регулярным, и хаусдорфовым). Урысон доказал, что непересекающиеся замкнутые множества в нормальном пространстве функционально отделимы.
Огромную роль в современной математике играет понятие компактности. Для его определения нам потребуется вспомогательное понятие покрытия. Покрытием множества A в топологическом пространстве Т называется семейство { AК } открытых (или замкнутых) множеств, сумма которых содержит A, т.е. АК = A.
Если некоторая часть { AКi } покрытия { AК } сама образует покрытие пространства Т, то { AКi } называется подпокрытием покрытия { AК }.
Определение. Пространство Т называется компактным, если из всякого его покрытия можно выделить конечное подпокрытие.
Множество X Т называется компактным, если оно, рассматриваемое как подпространство в Т, компактно.
Определение. Топологическое компактное хаусдорфово пространство называется компактом.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.