ответы на билеты (928559), страница 6
Текст из файла (страница 6)
K1 = tg . (5.28)
Угловой коэффициент нейтральной линии, как следует из (5.27), определяется выражением: (5.29)
Т.к. в общем случае Ix Iy, то условие перпендикулярности прямых, не соблюдается, поскольку K1 - 1/К2 . Брус изгибается не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной
Билет 7
1) энергия деформации и работа внешних сил при растяжении (сжатии) линейно упругих стержней. Удельная потенциальная энергия
Потенциальная энергия деформации
Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде: А = U + K. (2.8) При действии статических нагрузок К = 0, следовательно, А = U. (2.9) Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.
На рис. 2.4, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку l, ниже показан график изменения величины удлинения стержня l в зависимости от силы Р (рис. 2.4, б). В соответствии с законом Гука этот график носит линейный характер.
Пусть некоторому значению силы Р соответствует удлинение стержня l. Дадим некоторое приращение силе Р соответствующее приращение удлинения составит d (l ). Тогда элементарная работа на этом приращении удлинения составит:
dA = (P + d P)d ( l ) = Pd ( l ) + d P d ( l ) , (2.10) вторым слагаемым, в силу его малости, можно пренебречь, и тогда dA = Pd ( l ). (2.11) Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка перемещение”, работа внешней силы Р на перемещении l будет равна площади треугольника ОСВ (рис. 2.4), т.е. А = 0,5 Рl . (2.12) В свою очередь, когда напряжения и деформации распределены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде: . (2.13) Поскольку, в данном случае имеем, что V = F l, P = F и = Е , то
, (2.14) т.е. подтверждена справедливость (2.9). С учетом (2.5) для однородного стержня с постоянным поперечным сечением и при Р = const из (2.14) получим:
. (2.15)
Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.
2) геометрические характеристики плоских сечений
Билет 8
1) Теорема Кастилиано
Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.
Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы
,
)... и т. д. Под действием этих сил балка прогнется по кривой
и останется в равновесии.
Прогибы сечений 1, 2, 3,..., в которых приложены силы ,
,
,..., обозначим
,
,
,... и т. д. Найдем один из этих прогибов, например
— прогиб сечения, в котором приложена сила
.
Переведем балку, не нарушая равновесия, из положения в смежное положение
, показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.
Мы представим себе, что для перехода к смежному деформированному состоянию к силе
сделана бесконечно малая добавка
(Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.
Расчетная модель к теореме Кастильяно.
При переходе от состояния балки к состоянию
все нагрузки Р опустятся, значит, их потенциальная энергия уменьшится. Так как равновесие не нарушалось, то уменьшение, энергии нагрузок
целиком преобразовалось в увеличение потенциальной энергии деформаций балки dU. Величина
измеряется работой внешних сил при переходе балки из положения
в положение II:
Изменение dU потенциальной энергии деформации, являющейся функцией сил ,
,
,..., произошло за счет очень малого приращения одной из этих независимых переменных
, поэтому дифференциал такой сложной функции равен:
Что касается величины , то эта работа в свою очередь является разностью работы нагрузок Р для положений
и
:
Работа при одновременном и постепенном возрастании сил Р равна:
При вычислении работы учтем, что ее величина всецело определяется окончательной формой деформированной балки и не зависит от порядка, в котором производилась нагрузка.
Предположим, что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется (Рис.2, положение III), и прогибы ее в точках 1, 2, 3 будут
. Работа статически приложенной нагрузки
будет равна
. После этого начнем постепенно нагружать балку одновременно возрастающими грузами
,
,
.
Рис.2. Расчетная модель к теореме Кастильяно.
К первоначальным прогибам
добавятся прогибы
(Рис.2). При этой стадии нагружения силы
,
,
произведут работу
, кроме этого, произведет работу уже находившийся на балке груз
; он пройдет путь
, и так как при втором этапе нагружения он оставался постоянным, то его работа равна
Балка займет положение
, показанное на Рис.2 пунктиром.
Таким образом, полная работа, проделанная внешними нагрузками при переходе балки из недеформированного состояния в положение , будет равна.
Теперь вычислим
Пренебрегая слагаемым второго порядка малости, получаем:
Подставляя полученные значения dU и в исходное уравнение, находим
или
Таким образом, в рассмотренном случае прогиб точки приложения сосредоточенной силы , равен частной производной потенциальной энергии деформации по этой силе.
Полученный результат можно обобщить. Пусть на балку помимо сосредоточенных сил Р действуют в разных сечениях еще пары сил М (Рис.3). Мы можем повторить предыдущие рассуждения, считая, что балка переводится из положения в положение
путем добавки
к паре
. Весь ход рассуждений остается без изменений, надо будет лишь при вычислении работы моментов
,
... умножать их не на прогибы, а на углы поворота
,
,... тех сечений, где эти пары приложены. Тогда dU будет равно
станет
, и в итоге получим:
Рис.3. Обобщенная расчетная модель к теореме Кастильяно.
Так как — это перемещение, соответствующее силе
, a
— перемещение, соответствующее силе
то полученные нами результаты можно формулировать так: производная потенциальной энергии деформации по одной из независимых внешних сил равна перемещению, соответствующему этой силе. Это и есть так называемая теорема Кастильяно, опубликованная в 1875 г.