ответы на билеты (928559), страница 2
Текст из файла (страница 2)
П ри деформации элемента, ограниченного площадками чистого сдвига, квадрат превращается в ромб. — абсолютный сдвиг,
— относительный сдвиг или угол сдвига.
2 ) Теорема о взаимности работы
Билет 3
1)Удельная потенциальная энергия при сдвиге. потенциальная энергия деформации при кручении стержня
Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде: А = U + K. (2.8) При действии статических нагрузок К = 0, следовательно, А = U. (2.9) Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.
На рис. 2.4, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку l, ниже показан график изменения величины удлинения стержня l в зависимости от силы Р (рис. 2.4, б). В соответствии с законом Гука этот график носит линейный характер.
Пусть некоторому значению силы Р соответствует удлинение стержня l. Дадим некоторое приращение силе Р соответствующее приращение удлинения составит d (l ). Тогда элементарная работа на этом приращении удлинения составит:
dA = (P + d P)d ( l ) = Pd ( l ) + d P d ( l ) , (2.10) вторым слагаемым, в силу его малости, можно пренебречь, и тогда dA = Pd ( l ). (2.11) Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка перемещение”, работа внешней силы Р на перемещении l будет равна площади треугольника ОСВ (рис. 2.4), т.е. А = 0,5 Рl . (2.12) В свою очередь, когда напряжения и деформации распределены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде: . (2.13) Поскольку, в данном случае имеем, что V = F l, P = F и = Е , то
, (2.14) т.е. подтверждена справедливость (2.9). С учетом (2.5) для однородного стержня с постоянным поперечным сечением и при Р = const из (2.14) получим:
. (2.15)
Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.
Потенциальная энергия при сдвиге:
Удельная потенциальная энергия деформации при сдвиге:
где V=аF — объем элемента. Учитывая закон Гука, .
Вся потенциальная энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю.
Потенциальная энергия при кручении:
2) Напряжение в наклонных площадках растянутого стержня
Рассмотрим более подробно особенности напряженного состояния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, составляющей угол с плоскостью нормального сечения (рис. 2.6, а).
Рис. 2.6
Из условия z = 0, записанного для отсеченной части стержня (рис. 2.6, б), получим: р F = F, (2.17)
где F площадь поперечного сечения стержня, F = F/cos площадь наклонного сечения. Из (2.17) легко установить: р = сos . (2.18)
Раскладывая напряжение р по нормали и касательной к наклонной площадке (рис. 2.6, в), с учетом (2.18) получим:
= p cos = cos2 ; = p sin = 0,5 sin 2 . (2.19)
Полученные выражения показывают, что для одной и той же точки тела величины напряжений, возникающих в сечениях, проходящих через эту точку, зависят от ориентации этой площадки, т.е. от угла . При = 0 из (2.19) следует, что = , = 0. При = /2, т.е. на продольных площадках, = = 0. Это означает, что продольные слои растянутого стержня не взаимодействуют друг с другом. Касательные напряжения принимают наибольшие значения при = /4, и их величина составляет max=/2. Важно отметить, как это следует из (2.19), что . Следовательно, в любой точке тела на двух взаимно перпендикулярных площадках касательные напряжения равны между собой по абсолютной величине. Это условие является общей закономерностью любого напряженного состояния и носит название
закона парности касательных напряжений.
Т еперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня (рис. 2.7). Если обозначить:
то, как показывают эксперименты, = const для данного материала и является безразмерным коэффициентом Пуассона
Величина является важной характеристикой материала и определяется экспериментально. Для реальных материалов принимает значения 0,1 0,45.
При растяжении стержня возникают не только линейные, но и угловые деформации.
Рассмотрим прямой угол АВС (рис. 2.8, а), образованный отрезками АВ и АС, в недеформированном состоянии.
Рис. 2.8
При растяжении стержня точки А, В и С займут положение А , B , C соответственно. Величина = ВАС А B C
называется угловой деформацией или угловым сдвигом в точке А.
Совместим точки А и А и рассмотрим взаимное расположение отрезков АВ и А B (рис. 2.8, б). На этом рисунке отметим вспомогательные точки K и L и прямую n, перпендикулярную отрезку А B . Из рис. 2.8, б имеем:
прод = ; попер =
, откуда с учетом прод =
получим:
Для определения спроектируем ломаную ВLB А на ось n Ssin = BL cos ( + ) + LB sin( + ), откуда, учитывая малость угла , т.е. sin , cos 1, получим:
В результате совместного рассмотрения (2.20) и (2.21) получим:
Сопоставляя выражение с выражением из (2.17) ( = 0,5 sin 2 ) окончательно получим закон Гука для сдвига: (2.23)
где величина называется модулем сдвига или модулем упругости материала второго рода.
Если пренебречь случайным разбросом прочностных свойств материала конструкции, то расчетное и нормативное значения, а также среднее значение несущей способности R совпадают
RP = [R] = <R> = R,
а уравнение (7) позволяет получить выражение нормативной или допускаемой нагрузки через
(Пусть внешние нагрузки определены с точностью до одного параметра S, а напряжение связано с этим параметром зависимостью
Тогда условие прочности (1) можно записать через внешние нагрузки
S < R | (3) |
Здесь через R обозначено предельное значение нагрузки, т.е. такое ее значение, которое приводит к предельному состоянию
.
Величина R, зависящая от свойств материала и условий нагружения, называется несущей способностью или сопротивлением.
При заданном значении S отношение
называется коэффициентом запаса.
Он обозначает, что сколько раз нужно увеличить нагрузку, чтобы достичь предельного состояния. Вместо условия прочности (2) можно записать эквивалентное условие)
n > 1 |
нормативный коэффициент запаса
[S] = R / [n].
При этом параметр несущей способности R связан с предельным значением напряжения.
Если на заданную конструкцию действует фиксированная неслучайная нагрузка S, то соотношение
NS = R / S Определяет коэффициент запаса по нагрузке
При этом условие прочности можно переписать следующим образом
S < [S].
После подстановки условие прочности примет вид
nS > [n]
Переход от нагрузок к вызываемым этими нагрузками напряжениям производится по ранее описанным соотношениям. Отношение