1612135124-c82f95de5ae5b8e93bc9da7770e8f930 (829504), страница 6
Текст из файла (страница 6)
.. y (t) = . = , y0 = . ,...yN (t)αN(N−1)x(t)Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàA=ÍàéäåìN010001......00001001...000000−aN−aN−1..........−a2 −a1ëèíåéíî-íåçàâèñèìûõ ðåøåíèé çàäà÷è Êîøè (2):xk (t)y1k (t) 0 .. xk (t) [k]y (t) = . = ,...yN k (t)(N−1)xk(t)k = 1,...,N .Òîãäà ôóíäàìåíòàëüíóþ ìàòðèöó ðåøåíèé çàäà÷è Êîøè (2)åñòåñòâåííî íàçâàòü òàêæå ôóíäàìåíòàëüíîé ìàòðèöåéÔóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàðåøåíèé çàäà÷è Êîøè (1):x1 (t).....Φ(t) = .(N−1)x1(t) . .
.xN (t)...(N−1).xN(3)(t)Åñòåñòâåííî, ÷òî äëÿ ìàòðèöû (3) ñïðàâåäëèâà ôîðìóëà (10)èç 3:detΦ(t)òàê êàê= detΦ(0) · e Tr (A)·t = detΦ0 · e −a1 t ,(4)Tr (A) = −a1 .Ôîðìóëà (4) íàçûâàåòñÿ ôîðìóëîé Ëèóâèëëÿ, à detΦ(t) îïðåäåëèòåëåì Âðîíñêîãî, èëè âðîíñêèàíîì, è îáîçíà÷àåòñÿîáû÷íî ÷åðåçW (t),òî åñòü (ñì. (4))W (t) = detΦ(t) = e −a1 t · W (0) = e −a1 t W0 .Âåðíåìñÿ ñíîâà ê çàäà÷å Êîøè äëÿ ëèíåéíîé ñèñòåìû0y = Ay ,y (0) = y0t ∈ R 1;0y = Ay :(5)Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàè îáñóäèì íåêîòîðûå ñâîéñòâà ôóíäàìåíòàëüíîé ìàòðèöûðåøåíèéY (t)çàäà÷è Êîøè (5).Íàïîìíèì, ÷òî ðåøåíèå çàäà÷è Êîøè (5) çàäàåòñÿ ôîðìóëîé(ñì. 2):∞ kXt kA ) · y0 ,y (t) = (k=0k!(6)ëèáî ôîðìóëîé (ñì. 3):y (t) = Y (t) · Y −1 (0) · y0 .ÏóñòüY (t)(5), òî åñòü(7)- ôóíäàìåíòàëüíàÿ ìàòðèöà ðåøåíèé çàäà÷è ÊîøèY (t)ÿâëÿåòñÿ ðåøåíèåì ñëåäóþùåé çàäà÷è Êîøèäëÿ ìàòðè÷íîãî óðàâíåíèÿ:0Y (t) = AY (t), t ∈ R 1Y (0) = Y0 , detY0 6= 0.(8)Òàê êàê (ñì.
ôîðìóëó (10) èç 3):4(t) = detY (t) 6= 0,Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàòî∃Y −1 (t).ÏîñêîëüêóY −1 (t) · Y (t) = IN ,òîddY −1dY(Y −1 · Y ) =Y + Y −1=0 ⇒dtdtdt⇒Òàêèì îáðàçîì, ìàòðèöàdY −1= −Y −1 · A.dtY −1 ÿâëÿåòñÿ ðåøåíèåìçàäà÷è Êîøèñëåäóþùåãî âèäà:dY −1dtY−1= −Y −1 A,(0) = Y0−1 .Íàéäåì ðåøåíèÿ çàäà÷è Êîøè (8)[1],[2]íà÷àëüíûì äàííûì Y0.t ∈ R 1;Y [1],[2] (t),(9)îòâå÷àþùèådd(Y [1] )−1dY [2][(Y [1] )−1 Y [2] ] =· Y [2] + (Y [1] )−1 ·=0dtdtÔóíäàìåíòàëüíàÿ ìàòðèöàdtè ìàòðè÷íàÿ ýêñïîíåíòàâ ñèëó (8), (9).Ñëåäîâàòåëüíî,(Y [1] (t))−1 Y [2] (t) = B,ãäåBB = (Y0[1] )−1 Y0[2] ,- ïîñòîÿííàÿ ìàòðèöà, detB6= 0,òî åñòüY [2] (t) = Y [1] (t)B.(10)Ìû äîêàçàëè, ÷òî åñëè èçâåñòíà êàêàÿ-ëèáî ôóíäàìåíòàëüíàÿ[1]ìàòðèöà ðåøåíèé çàäà÷è Êîøè (5) Y (t), òî ëþáàÿ äðóãàÿ[2]ôóíäàìåíòàëüíàÿ ìàòðèöà ðåøåíèé çàäà÷è Êîøè (5) Y (t)ìîæåò áûòü íàéäåíà ïî ôîðìóëå (10).[2][1] −1 ÷àñòíîñòè, ïóñòü Y0 (t) = IN è B = (Y0 ) .
ÒîãäàY [2] (t) = Y [1] (t)(Y0[1] )−1 .Ñëåäîâàòåëüíî, ñðåäè âñåõ ôóíäàìåíòàëüíûõ ìàòðèö ìûâûäåëèëè òó, êîòîðàÿ ÿâëÿåòñÿ ðåøåíèåì çàäà÷è Êîøè (8) ñíà÷àëüíûìè äàííûìèY (0) = IN .Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàÊàê è â ñëó÷àå âåêòîðíîãî óðàâíåíèÿ0y = Ay ,äëÿ çàäà÷èÊîøè (8) ìîæíî íàïèñàòü ôîðìóëó ðåøåíèÿ àíàëîãè÷íîôîðìóëå (6) (èáî (8) ñâîäèòñÿ ê (5))Y (t) = IN +t1!tkAIN + ...
+k!Ak IN + ... =∞ kXtk=0k!Ak .(11)Íàïîìíèì, ÷òî ðåøåíèå çàäà÷è Êîøè (8) âûïèñàíî äëÿ ñëó÷àÿY (0) = IN .Ñðàâíèì òåïåðü ðÿä (11) ñ ðÿäîì Ìàêëîðåíà äëÿýêñïîíåíöèàëüíîé ôóíêöèèeate at :=∞ kXtk=0ãäåak!ak ,- íåêîòîðàÿ ïîñòîÿííàÿ.Íàçîâåì ïî àíàëîãèèY (t) = eAt=∞ kXtk=0k!Ak ,0(11 )Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàìàòðè÷íîé ýêñïîíåíòîé.Ïîëó÷èì îöåíêó íîðìû ìàòðè÷íîé ýêñïîíåíòûÒàê êàê||Ak || ≤ ||A||kè||A + B|| ≤ ||A|| + ||B||0(11 ).(óïðàæíåíèå -äîêàçàòü!), ïîëó÷èì||Y (t)|| ≤∞X|t|kk=0k!||A||k = e |t|·||A|| .(12)Äîêàæåì òåïåðü, ÷òîe tA · A = Ae tA ,(13)êîòîðîå î÷åâèäíî, íî äàäèì äðóãîé âàðèàíò.d tAde tA(e A) =A = Ae tA A = A(e tA A)dtdtèdde tA(Ae tA ) = A= A · Ae tA = A(Ae tA ).dtdtÔóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàÊðîìå òîãî, ïðèt=0èìååì:(e tA · A)t=0 = (Ae tA )t=0 = A.Ñëåäîâàòåëüíî, ìàòðèöûe tA AèAe tAóäîâëåòâîðÿþò îäíîé èòîé æå çàäà÷å Êîøè (8):0Y (t) = AY (t), t ∈ R 1 ;Y (0) = Y0 (= A).0(8 ) ñèëó òåîðåìû åäèíñòâåííîñòè èññëåäóåìûå ìàòðèöûñîâïàäàþò.Äàëåå, èç ôîðìóëû (10) (ñì.
3) ñëåäóåò:deteòî åñòüe tAtA= e Tr (A)t 6= 0 ∀t ∈ R 1 ,- íåâûðîæäåííàÿ è ïîýòîìó(∃(e tA )−1 ,d(e tA )−1tA −1dt = −(e ) −1 · A,tA−1 (e ) t=0 = (IN ) = IN .t ∈ R 1,ïðè÷åì0(9 )Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòà òî æå âðåìÿ èç (13) ñëåäóåò0A(e tA )−1 = (e tA )−1 A,òî åñòü ñèëó(13 )(e tA )−1 ïåðåñòàíîâî÷íà ñ A.00(13 ) çàäà÷à Êîøè (9 ) ïåðåïèøåòñÿ òàê:(d(e tA )−1tA −11dt = −A(e ) , t ∈ R ,tA−1 (e ) t=0 = IN .Íî çàäà÷à Êîøèìàòðèöåé00(9 )00(9 )ÿâëÿåòñÿ ïðîñòî çàäà÷åé Êîøè (8) ñ−A:0Y (t) = −AY (t),Y (0) = IN ,t ∈ R 1;00(8 )òî åñòü (ñì. (11)):Y (t) = e−tA=∞Xk=0k(−1)·tkk!Ak .Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàÈòàê, ìû äîêàçàëè çàìå÷àòåëüíóþ ôîðìóëó:(e tA )−1 = e −tA .(14)Ïðèìåð.Ìàòðèöà 2teY (t) =e 2tet0,detY (t)= −e 3t 6= 0,ÿâëÿåòñÿ ôóíäàìåíòàëüíîé ìàòðèöåé ðåøåíèé çàäà÷è Êîøèäëÿ ñèñòåìû 0yy = 1 = Ay ,y20ÌàòðèöàY (t)2e2t2e2tet0=10A=1102 2te2e 2t1et0,.0Y = AY .Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòàóäîâëåòâîðÿåò ìàòðè÷íîé ñèñòåìåÎáðàòíàÿ ìàòðèöàY−1=e −2te −t0e −tóäîâëåòâîðÿåò ñèñòåìå0(Y −1 ) = −Y −1 A.e tA(0):Ìàòðèöà−1B=YetAY (t)óìíîæåíèåì ñëåâà íà011−1ïîëó÷àåòñÿ èç 2te=e 2tet0Ðàíåå ìû äîêàçàëè, ÷òî= te(e tA )−1 = e −tA0èe 2t − e te 2t.||e tA || ≤ e |t|·||A||(ñì.(11), (14)).Ñëåäîâàòåëüíî:||e −tA || ≤ e |t|·||−A|| = e |t|·||A|| .Äàëåå, òàê êàêe tA · e −tA = IN||e tA || ≥è1||IN || = 1 ≤ ||e tA || · ||e −tA ||,òî≥ e −|t|·||A|| .Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòà||e −tA ||Èòàê, èìååì:e −|t|·||A|| ≤ ||e tA || ≤ e |t|·||A|| .(15)Çàìåòèì, ÷òî â îòëè÷èå îò ýêñïîíåíöèàëüíîé ôóíêöèè, âîîáùåãîâîðÿ,e t(A+B) 6= e tA · e tB .Ïðèìåð.A=1002,B=etA0100=eèet0A+B =,02tet(A+B)=, te0etB1102=.1t01e 2t − e te 2t,e t(A+B) 6= e tA e tB .Óïðàæíåíèÿ1.||A + B|| ≤ ||A|| + ||B||.Ôóíäàìåíòàëüíàÿ ìàòðèöà è ìàòðè÷íàÿ ýêñïîíåíòà2.Çàäà÷àdZ (s)ds= −Z (s) · A,Z (t) = IN ,0≤ s < t,íàçûâàåòñÿ ñîïðÿæåííîé ïî îòíîøåíèþ ê çàäà÷åÏîêàæèòå, ÷òîdY (t)dt= AY (t),Y (0) = IN .t > 0,Z (s) = Y (t) · Y −1 (s).3.
Ïîêàçàòü, ÷òîe t(A+B) = e tA · e tB⇔AB = BA.4.ÅñëèP(A) = Pk Ak + ... + P1 A + P0 ,Q(A) = Ql Al + ... + Q1 A + Q0 ,ïîëèíîìû îòAñ ïîñòîÿííûìè êîýôôèöåíòàìèe t(P+Q) = e tP · e tQ .Pi , Q j ,òî5. Âû÷èñëåíèå ìàòðè÷íîé ýêñïîíåíòû äëÿ íåêîòîðûõñïåöèàëüíûõ ìàòðèöÍà÷íåì ñî ñëó÷àÿ, êîãäàA- äèàãîíàëüíàÿ ìàòðèöà, òî åñòüτ1A = diag(τ1 , ... , τN ) = 0....0τNÏîñêîëüêó (ñì. 4)etA=∞ kXtk=0òî äëÿ äèàãîíàëüíîé ìàòðèöûAk!Ak ,(1)ïîëó÷àåì:∞ k∞ kXXt kt ke tA = diag(τ1 , ... ,τN ) = (e tτ1 , ...
, e tτN ).k=0k!k=0k!Áåç òðóäà ìîæíî âû÷èñëèòü ìàòðè÷íóþ ýêñïîíåíòóe tAìàòðèö, êîòîðûå ïðèâîäÿòñÿ ê äèàãîíàëüíîé ôîðìå.Ïðèìåðû ìàòðè÷íîé ýêñïîíåíòûäëÿ òåõÒàêèìè ìàòðèöàìè ÿâëÿþòñÿ:à) ýðìèòîâû ìàòðèöûìàòðèöàU = U(A)A,òî åñòüA∗ = A.Òîãäà∃óíèòàðíàÿ(ñì. 1), òàêàÿ ÷òîA = U ∗ · diag(τ1 , ... , τN ) · U,τi = τi (A), i = 1,...,N- ñîáñòâåííûå çíà÷åíèÿá) íîðìàëüíûå ìàòðèöû ýòîì ñëó÷àå òîæå∃ïðèâîäÿùàÿ ìàòðèöóA,óíèòàðíàÿAA;AA∗ = A∗ A.ìàòðèöà U = U(A),òî åñòüê äèàãîíàëüíîìó âèäó:A = U ∗ · diag(τ1 , ...
, τN ) · U,â) ìàòðèöûA,èìåþùèå ïðîñòîé ñïåêòð, òî åñòü íåêðàòíûåñîáñòâåííûå çíà÷åíèÿ τi = τi (A),∃T (A), detT 6= 0, òàêàÿ ÷òîi = 1,...,N . ýòîì ñëó÷àåA = T −1 · diag(τ1 , ... , τN ) · T .Âî âñåõ ýòèõ ñëó÷àÿõ(e tA )0=Ae tA èëèe tAâû÷èñëÿåòñÿ òàê: òàê êàê0(e tA ) = U ∗ DUe tAÏðèìåðû ìàòðè÷íîé ýêñïîíåíòû0(e tA ) = T −1 DTe tA ,ãäåD = diag(τ1 , ... , τN ), òî åñòü ìàòðèöàZ (t) = Ue tA U ∗ (Z (t) = Te tA T −1 ) óäîâëåòâîðÿåòñëåäóþùåéçàäà÷å Êîøè:0Z (t) = DZ (t),Z (0) = IN .t ∈ R 1,Çíà÷èò (ñì. 4),Z (t) = e τ D = diag(e τ1 t , ...
, e τN t )èe tA = U ∗ e tD U (T −1 e tD T ),÷òî è òðåáîâàëîñü äîêàçàòü.Äëÿ ïðîèçâîëüíûõ ìàòðèö äåëî îáñòîèò íåñêîëüêî ñëîæíåå. Âòåîðèè ìàòðèöÒåîðåìà Øóðà∃îäíà âåñüìà ïîëåçíàÿ òåîðåìà, à èìåííîÏðèìåðû ìàòðè÷íîé ýêñïîíåíòûÅñëè äàíà ìàòðèöàA,∃òîóíèòàðíàÿ ìàòèöàU = U(A),ïðèâîäÿùàÿ A ê âåðõíåìó òðåóãîëüíîìó âèäó:A = U ∗ ∇U,ãäåτ1 p12 0 τ2∇=0 ...0pij , i = 1,...,N−1, j = 2,...,N0.........τN−1...0p1Np2N ,pN−1,N τN- íåêîòîðûå ïîñòîÿííûå.Èìåÿ â âèäó òåîðåìó Øóðà, ìîæíî ñðàçó ñ÷èòàòü, ÷òî âñèñòåìå0y = AyìàòðèöàA- âåðõíÿÿ òðåóãîëüíàÿ, èáî åñëèýòî íå òàê, òî äåëàÿ çàìåíó ïåðåìåííûõ z = Uy ïîëó÷àåì000y = Ay = U ∗ ∇Uy ⇒ Uy = ∇Uy ⇒ z = ∇z .Èòàê, âû÷èñëèì e tA , êîãäà A = ∇ - âåðõíÿÿ òðåóãîëüíàÿìàòðèöà.Ïðèìåðû ìàòðè÷íîé ýêñïîíåíòûÄëÿ ýòîãî íàì ïîíàäîáèòñÿ ôîðìóëà, äàþùàÿ ðåøåíèå çàäà÷èÊîøè äëÿ íåîäíîðîäíîãî óðàâíåíèÿ ïåðâîãî ïîðÿäêà (ñì.
1):ãäåa0y = ay + f (t), t ∈ R 1 ;y (0) = y0 , y0 ∈ R 1 (C 1 ),(2)- íåêîòîðàÿ ïîñòîÿííàÿ. Ýòà ôîðìóëà ëåãêî ìîæåò áûòüíàéäåíà.  ñàìîì äåëå, òàê êàêd −at{e y (t)} = e −at f (t),dty (t) = e at y0 =Ýëåìåíòûk -îãîZòîte a(t−s) f (s)ds.(3)0ñòîëáöà ìàòðèöûe tAíàõîäÿòñÿ êàê ðåøåíèåÏðèìåðû ìàòðè÷íîé ýêñïîíåíòûâåêòîðíîé ñèñòåìû ñ ñîîòâåòñòâóþùèìè íà÷àëüíûìè äàííûìè:0[k]1(y [k] (t)) = ∇y (t), t ∈ R ,0. ..
1y [k] (0) = ← koe ,0...ãäå y [k] (t)y1k (t) .. = . ,yN k (t)èëè, â ïîêîìïîíåíòíîé çàïèñè: 0Py1k (t) = τ1 y1k (t) + Ni=2 p1i yik (t), y1k (0) = 0; 0Py2k (t) = τ2 y2k (t) + Ni=3 p2i yik (t), y2k (0) = 0;...P 0ykk (t) = τk ykk (t) + Ni=k+1 pki yik (t), ykk (0) = 1,Ïðèìåðû ìàòðè÷íîé ýêñïîíåíòû(4)PN 0y(t)=τy(t)+k+1k+1,ki=k+2 pk+1,i yik (t),k+1,kyk+1,k (0) = 0; ...0yN−1,k (t) = τN−1 yN−1,k (t) + pN−1,N yN ,k (t),y 1,k (0) = 0; N−0yN ,k (t) = τN yN ,k (t), yN ,k (0) = 0.(5)Çàäà÷ó Êîøè ìû ðàçáèëè íà äâå ïîäçàäà÷è. ßñíî, ÷òî çàäà÷à(5) äëÿ îïðåäåëåíèÿ ýëåìåíòîâñòîëáöà ìàòðèöûY (t) = e tAyk+1,k (t), ... , yN ,k (t) k -îãîìîæåò ðàññìàòðèâàòüñÿ îòäåëüíî,è ïîñêîëüêó íà÷àëüíûå äàííûå íóëåâûå, òî â ñèëó òåîðåìûåäèíñòâåííîñòè (ñì. 2):yi,k (t) ≡ 0,Ñëåäîâàòåëüíî, ìàòðèöài = k + 1, ...