1612135124-c82f95de5ae5b8e93bc9da7770e8f930 (829504), страница 4
Текст из файла (страница 4)
Îãðàíè÷åìñÿ ïîêà òîëüêîïðèìåðàìè, íå äàâàÿ ñòðîãîãî îïðåäåëåíèÿ ñèñòåìû.Ïðåäâàðèòåëüíûå ñâåäåíèÿÏðèìåð 2.y1 0 = −y2 ,0y2 = y1 .(8)Çäåñüy1,2 = y1,2 (t) - íåèçâåñòíûå ôóíêöèè.îáîçíà÷åíèÿ:y1 (t)y (t) =- âåêòîð-ôóíêöèÿ.y2 (t)ÂâåäåìÒîãäà ñèñòåìó (8) ìîæíî ïåðåïèñàòü òàê: (âåêòîðíûé âèä)0y (t) =y1y20⇒dydt= y (t) ⇒0y =Ay , ãäå 0 −1A=100y10y2=0−110 y1,y2èëè- ìàòðèöà. îáùåì ñëó÷àå ñèñòåìó ëèíåéíûõ óðàâíåíèé ñ ïîñòîÿííûìèêîýôôèöåíòàìè äëÿNíåèçâåñòíûõ ôóíêöèéy1 (t), ..., yN (t)çàïèøåì â âåêòîðíîì âèäå:0y =dy= Ay ,dtÏðåäâàðèòåëüíûå ñâåäåíèÿ(9)ãäåy =aijy1 (t)...a11. .
. a1N ... , A = (aij ) = ... , i,j=1,...,N,yN (t)aN 1 . . . aNN- ýëåìåíòû ìàòðèöûA,ïîñòîÿííûå âåùåñòâåííûå (èëèêîìïëåêñíûå) ÷èñëà.Ïîêîìïîíåíòíàÿ çàïèñü ñèñòåìû (9) ñîñòîèò èçNóðàâíåíèéNXdyi=aij yij , i = 1,...,N .dt0(9 )j=1Çàìåòèì, ÷òî ñèñòåìà (9) - îäíîðîäíàÿ, ñèñòåìà æådyi= Ay + f (t),dtãäåf (t) = f1 (t)...00(9 )- çàäàííàÿ âåêòîð-ôóíêöèÿ, íåîäíîðîäíàÿ.fN (t)Ïðåäâàðèòåëüíûå ñâåäåíèÿÍàêîíåö, íàðÿäó ñ (9) áóäåì ðàññìàòðèâàòü òàê íàçûâàåìûåìàòðè÷íûå óðàâíåíèÿdY= AY ,dtãäåy11.
. . y1N(10).. Y = (yij ) = .... ; i, j =1,...,N,yN 1 . . . yNNïðè ýòîì, ïî îïðåäåëåíèþdY=dt0y11...00. . . y1N...0.yN 1 . . . yNNÏîêîìïîíåíòíàÿ çàïèñü ñèñòåìû (10) òàêîâà:NXdyir=aij yjr ,dtj, r = 1, ..., Nj=1Ïðåäâàðèòåëüíûå ñâåäåíèÿ0(10 )Èç (100)ñëåäóåò, ÷òî íà ñàìîì äåëå (10) ìîæíî ïåðåïèñàòü ââèäå âåêòîðíîé ñèñòåìû. Äåéñòâèòåëüíî, îáîçíà÷èì ÷åðåçy [k] , k=1,...,Nñëåäóþùèå âåêòîð-ôóíêöèèy11y1N y [1] = ... , ... , y [N] = ... .y1NyNNÒîãäà èç (10dy [k]dt0)ñëåäóåò, ÷òî= Ay [k] , k=1,...,N èëè [1] yAd . . . =dt0y [N]0...y [1 ] ..
. ,Ay [N]00(10 )òî åñòü ìû ïîëó÷èëè ñèñòåìó âèäà (9).Ñâåäåíèÿ èç òåîðèè ìàòðèö.R N - N -ìåðíîå âåùåñòâåííîå åâêëèäîâîN -ìåðíîå êîìïëåêñíîå ïðîñòðàíñòâî.ïðîñòðàíñòâî,Ïðåäâàðèòåëüíûå ñâåäåíèÿCN-y =y1 (t)...,yN (t)ïðè÷åì∀t ∈ R 1 y (t) ∈ R NÊàê èçâåñòíî, äëÿ âåêòîðîâ èçRN(èëè(èëèCN)C N ).ìîæíî ââåñòèäëèíó (íîðìó):vu NpuX|yi |2||y || = (y , y ) = t∀t ∈ R 1 .i=1Çäåñü(y , x) =NXyi xii=1-ñêàëÿðíîå ïðîèçâåäåíèåâåêòîðîâ, y1x1 .. .. y = . , x = .
.yNxNÏðåäâàðèòåëüíûå ñâåäåíèÿ(11), ∈ CN .Âàðèàíò äëÿ x yÑêàëÿðíîå ïðîèçâåäåíèå îáëàäàåò ñâîéñòâàìè:1)(y , x)= (x, y ),α ∈ C 1,2)(αy , x) = α(y , x),3)(y , αx) = α(y , x),d ∈ C 1,4)||y || = 0⇔ y = 0.Íåðàâåíñòâà Êóðàíòà:λmin (B)||y ||2 ≤ (By , y ) ≤ λmax (B)||y ||2 ,ãäåB = B∗(12)- ýðìèòîâà ìàòðèöà,λmin (B), λmax (B) - íàèìåíüøååB . Íàïîìíèì, ÷òîåñëè B = (bij ), òî B ∗ = (b̄ji ), i, j = 1, ..., N . Êðîìå òîãî, âñåñîáñòâåííûå ÷èñëà ýðìèòîâîé ìàòðèöû B âåùåñòâåííûå.è íàèáîëüøåå ñîáñòâåííûå ÷èñëà ìàòðèöûÄîêàæåì (12).∃óíèòàðíîå ïðåîáðàçîâàíèåU (U −1 = U ∗ )òàêîå, ÷òîB = U ∗ DU,D = diag (λ1 , ..., λN ), λi = λi (B), i =1,...,N - ñîáñòâåííûåìàòðèöû B , ïðè÷åì λ1 = λmin (B), λN = λmax (B).Ïðåäâàðèòåëüíûå ñâåäåíèÿ÷èñëàÒîãäà(By , y ) = (U ∗ DUy , y ) = (DUy , Uy ) = λ1 |z1 |2 + ...++λN |zN |2 ,ãäå z1 .. z = .
= Dy .zNÑ äðóãîé ñòîðîíû2λ1 ||z|| ≤NXλi |zi |2 ≤ λN ||z||2 .(13)i=1Òàê êàê||z||2 = (z, z) = (Uy , Uy ) = (U ∗ Uy , y ) = (y , y ) = ||y ||2 ,òî èç (13) ñëåäóåò (12).y ∈ R N èëè (C N )A = (aij ), i,j=1,...N .Êðîìå íîðìû âåêòîðàíîðìó ìàòðèöûìîæíî ââåñòè òàêæå èÏðåäâàðèòåëüíûå ñâåäåíèÿÍàèáîëåå óïîòðåáèòåëüíûìè ÿâëÿþòñÿåâêëèäîâàîïåðàòîðíàÿ íîðìàèíîðìà (ïîñëåäíÿÿ = ôðîáåíèóñîâà íîðìà).Îïðåäåëåíèå 4. Îïåðàòîðíîé íîðìîé ìàòðèöûAíàçûâàþòâåëè÷èíó||Ay ||=||A|| = supy 6=0 ||y ||ssupy 6=0(Ay , Ay ).(y , y )(14)Ïðåîáðàçóåì ïðàâóþ ÷àñòü (14):=Çàìåòèì, ÷òîA∗ Armaxýðìèòîâà èmax(A∗ Ay , y ).||y ||=1A∗ A ≥ 0.(A∗ Ay , y ) = λmax (A∗ A) ≥ 0.||y ||=1Òàêèì îáðàçîì,||A|| =pλmax (A∗ A) ≥ 0.Ïðåäâàðèòåëüíûå ñâåäåíèÿ(15) îòëè÷èå îò îïåðàòîðíîé íîðìû ìàòðèöûíîðìà ìàòðèöûAAôðîáåíèóñîâàââîäèòñÿ òàê:vuXu N||A||E = t|aij |2 .(16)i,j=1Ïîêàæåì, ÷òî||A|| ≤ ||A||E .(17)Ñíà÷àëà âñïîìíèì íåðàâåíñòâî Áóíÿêîâñêîãî - Øâàðöà:|(x, y )|2 ≤ (x, x) · (y , y ).(18)Âåðíåìñÿ ê (17)vvu N NuXNNXuX Xu N X2||Ay || = t (aij yj ) ≤ t (|aij |2 )(|yj |2 ) =i=1 j=1= ||y || · ||A||Ei=1 j=1⇒||Ay ||≤ ||A||E||y ||j=1⇒Ïðåäâàðèòåëüíûå ñâåäåíèÿ(17) äîêàçàíî.
Ïîëåçíîå íåðàâåíñòâî:||A · B|| ≤ ||A|| · |B|| ñàìîì äåëå:s||A · B|| =rmax(ABy , ABy )=(y , y )y 6=0sup(A∗ ABy , By ) ≤||y ||=1≤rmax[λmax (A∗ A) · (By , By )] = ||A|| · ||B||.||y ||=1(19)2. Ðàçðåøèìîñòü çàäà÷è Êîøè äëÿ îäíîðîäíûõëèíåéíûõ ñèñòåì ñ ïîñòîÿííûìè êîýôôèöèåíòàìèÈçó÷àåìy 0 = Ay ,(1)îäíîðîäíóþ ñèñòåìó ëèíåéíûõ äèôôåðåíöèàëüíûõ óðàâíåíèé ñïîñòîÿííûìè êîýôôèöèåíòàìè.Ïîä çàäà÷åé Êîøè äëÿ (1) áóäåì ïîíèìàòü ñëåäóþùóþ çàäà÷óíàõîæäåíèÿ íåèçâåñòíîé âåêòîð-ôóíêöèè y = y (t): 0y = Ay , t ∈ R 1 ;(2)y (t0 ) = y0 , t0 ∈ R 1 ,ãäå y0 ∈ R N (èëè C N ) - íåêîòîðûé çàäàííûé âåêòîð, t0 çíà÷åíèå íåçàâèñèìîé ïåðåìåííîé t , ïðè êîòîðîì çàäàþòñÿíà÷àëüíûå óñëîâèÿ. Êðîìå òîãî, â îòëè÷èå îò çàäà÷è Êîøè(6) èç 1, ìû ðàññìàòðèâàåì çàäà÷ó Êîøè íà âñåéâåùåñòâåííîé îñè R 1 .Çàìåòèì, ÷òî íà÷àëüíûå óñëîâèÿ ìîæíî ðàññìàòðèâàòü òîëüêîïðè t = 0.
Ïîëîæèì τ = t − t0 , z(τ ) = y (τ + t0 ), òîãäà (1) è (2)Ðàçðåøèìîñòü çàäà÷è Êîøèïðåîáðàçóþòñÿ òàê:ddτ z(τ )= Az(τ ),z(0) = y0 .0(2 )0Âîçâðàùàÿñü â (2 ) ê ñòàðûì îáîçíà÷åíèÿì, ïîëó÷èì çàäà÷ó(2) ïðè t0 = 0.Êëàññè÷åñêîå îïðåäåëåíèå êîððåêòíîñòè çàäà÷è Êîøè(2)Îïðåäåëåíèå 1. Çàäà÷à Êîøè (2) íàçûâàåòñÿ êîððåêòíîé, åñëè1) åå ðåøåíèå ∃ ∀y0 ∈ R N (èëè C N );2) åå ðåøåíèå åäèíñòâåííî äëÿ çàäàííîãî âåêòîðà y0 ;3) åå ðåøåíèå íåïðåðûâíî çàâèñèò îò âåêòîðà y0 , ò.å. îòíà÷àëüíûõ äàííûõ.Ðàçîáüåì ïðîöåññ èññëåäîâàíèÿ çàäà÷è Êîøè íà íåñêîëüêîýòàïîâ.I) Äîïóñòèì, ÷òî çàäà÷à Êîøè (2) íà èíòåðâàëå (−T , T ), T > 0- íåêîòîðàÿ êîíñòàíòà èìååò íåïðåðûâíîå è íåïðåðûâíî äèôôåðåíöèðóåìîå ðåøåíèå y = y (t) (ò.å. êàæäàÿ êîìïîíåíòàâåêòîð-ôóíêöèè y = y (t) îáëàäàåò ýòèìè ñâîéñòâàìè).Ðàçðåøèìîñòü çàäà÷è ÊîøèÒàê êàê y = y (t) - ðåøåíèå çàäà÷è Êîøè (2), òî â ñèëóñèñòåìû ïîëó÷èì:dd00(y (t), y (t)) = ||y (t)||2 = (y (t), y (t))+dtdt0+(y (t), y (t)) = (Ay (t), y (t)) + (A∗ y (t), y (t)) == (By (t), y (t)) ≤ M+ ||y (t)||2 .Çäåñü B = A + A∗ = B ∗ , M+ = λmax (B).Ïóñòü ñíà÷àëà 0 ≤ t < T .
Òîãäàd||y (t)||2 − M+ ||y (t)||2 ≤ 0.dtÀ åñëè óìíîæèòü åãî íà e −M+ t , òî ïîëó÷èì:d −M+ t{e· ||y (t)||2 } ≤ 0,dtÒî åñòü||y (t)||2 ≤ e M+ t ||y (0)||2 ≤ e |M+ |·t ||y0 ||2 ≤ e |M+ |T ||y0 ||2Ðàçðåøèìîñòü çàäà÷è Êîøè(3)ïðè 0 ≤ t < T .Ïóñòü òåïåðü −T < t ≤ 0. Òîãäà, ñäåëàâ â çàäà÷å (2) çàìåíûíåçàâèñèìîé ïåðåìåííîéτ= −t ⇒ z(τ ) = y (−τ ) ⇒dzdy (−τ )=· (−1) = Ay (−τ )dτd(−τ )è çàâèñèìîé âåêòîðíîé ïåðåìåííîé Z (τ ) = y (−τ ), ïîëó÷àåì d000<τ <Tdτ Z (τ ) = −AZ (τ ),(2 )Z (0) = y0 .Ïîâòîðÿÿ ðàññóæäåíèÿ, êîòîðûå ïðèâåëè ê íåðàâåíñòâó (3),èìååì||Z (τ )||2 = ||y (t)||2 ≤ e M− (τ ) ||z(0)||2 ≤≤ e |M− |(τ ) ||y0 ||2 = e −|M− |t ||y0 ||2 ≤ e |M− |T ||y0 || (4)ïðè −T < t ≤ 0.Çäåñü M− = λmax (−B) = −λmin (B).Ðàçðåøèìîñòü çàäà÷è ÊîøèÎáúåäèíÿÿ (3),(4), ïîëó÷àåì àïðèîðíóþ îöåíêó:||y (t)||2 ≤ e M·|t| ||y0 ||2 ≤ e M·t ||y0 ||2 ,(5)ãäå M = max(|M+ , |M− |).Òåïåðü ìîæíî äîêàçàòü ñëåäóþùèå óòâåðæäåíèÿ èçîïðåäåëåíèÿ êîððåêòíîñòè çàäà÷è Êîøè (2).Òåîðåìà åäèíñòâåííîñòè.Åñëè ó çàäà÷è Êîøè ∃ íåïðåðûâíîå è íåïðåðûâíî äèôôåðåíöèðóåìîå ðåøåíèå y = y (t), t ∈ R 1 , òî îíîîäíîçíà÷íî îïðåäåëÿåòñÿ ïî çíà÷åíèþ âåêòîðà y (t) â òî÷êåt = 0, ò.å.
ïî íà÷àëüíûì óñëîâèÿì.Äîêàçàòåëüñòâî. Ïðåäïîëîæèì îáðàòíîå: ∃ äâà ðåøåíèÿy = y I ,II (t) çàäà÷è (2), ïðè÷åì y I ,II (0) = y0 .Îáîçíà÷èìy (t) = y I (t) − y II (t).Òîãäà0y = Ay , t ∈ R 1 ,y (0) = 0.Ðàçðåøèìîñòü çàäà÷è Êîøè(6) ñèëó àïðèîðíîé îöåíêè (5) ïîëó÷àåì:||y (t)||2 ≤ 0 ïðè t ∈ (−T , T ) ∀T > 0.Ñëåäîâàòåëüíî, y (t) ≡ 0 ïðè âñåõ t ∈ (−T , T ), ò.å.y I (t) ≡ y II (t) ∀t ∈ R 1 .II)  ïðåäïîëîæåíèè, ÷òî ðåøåíèå çàäà÷è Êîøè (2) ∃, ìûíàéäåì ôîðìóëó äëÿ ýòîãî ðåøåíèÿ.Èòàê, ïóñòü íà îòðåçêå [−T , T ], ãäå T > 0 - íåêîòîðàÿïîñòîÿííàÿ, ∃ íåïðåðûâíîå è íåïðåðûâíî-äèôôåðåíöèðóåìîåðåøåíèå çàäà÷è Êîøè (2).0Èç ïîêîìïîíåíòíîé çàïèñè âåêòîðíîé ñèñòåìû y = Ay (ñì.0ôîðìóëó (9 ) èç 1)0yi =NXaij · yij , i=1,..., Nj=10ñëåäóåò, ÷òî ôóíêöèè yi (t) - íåïðåðûâíûå èíåïðåðûâíî-äèôôåðåíöèðóåìûå íà [−T , T ].Çíà÷èò, ìû ìîæåì ïðîäèôôåðåíöèðîâàòü èñõîäíóþ ñèñòåìóÐàçðåøèìîñòü çàäà÷è Êîøè0y = Ay :(y ) = y = Ay = A · Ay = A2 y .0 0000È, ïîëàãàÿ t = 0, ïîëó÷èìy (0) = A2 y0 .00Íàïîìíèì, ÷òîy (0) = y0 ,0y (0) = Ay0 .Ïîâòîðÿÿ ýòè ðàññóæäåíèÿ ìíîãîêðàòíî, ìû ïðèéäåì êñëåäóþùåìó âûâîäó: åñëè íà îòðåçêå [−T , T ] ∃ íåïðåðûâíîå èíåïðåðûâíî-äèôôåðåíöèðóåìîå ðåøåíèå çàäà÷è Êîøè (2), òîíà ñàìîì äåëå ýòî ðåøåíèå áóäåò áåñêîíå÷íîäèôôåðåíöèðóåìûì, à ëþáàÿ ïðîèçâîäíàÿ îò ðåøåíèÿy = y (t) çàäàåòñÿ ñ ïîìîùüþ ôîðìóëûy (k) (t) = Ak y (t),ïðè÷åìy (k) (0) = Ak y0 .Ðàçðåøèìîñòü çàäà÷è ÊîøèÇäåñü k > 0 - ëþáîå öåëîå ÷èñëî.Èç ìàò.àíàëèçà èçâåñòíî, ÷òî y = y (t) ïðåäñòàâëÿåòñÿ â âèäåðÿäà Ìàêëîðåíà∞X tkttky (t) = y0 + A · y0 + ...
+ Ak y0 + ... =Ak y0 .1k!k!(7), (8)k=0è ðÿä (7) ðàâíîìåðíî ñõîäèòñÿ íà îòðåçêå [−T , T ], T > 0.Ïîñëåäíåå âåðíî, òàê êàê||tk k|t k |(|t| · ||A||)kA y0 || ≤· ||y0 || · ||A||k =||y0 || ≤k!k!k!(T · ||A||)k≤||y0 || → 0 ïðè k → ∞.k!∀T > 0 è y0 ∈ R N (èëè C N ).Çàìå÷àíèå 1. Íà ñàìîì äåëå ïðè îáîñíîâàíèè (7) òðåáóåòñÿîöåíèòü îñòàòî÷íûé ÷ëåí ôîðìóëû Òåéëîðà (Ñ.Ê. Ãîäóíîâ"Î.Ä.Ó.
ñ ïîñòîÿííûìè êîýôôèöåíòàìè, êðàåâûå çàäà÷è, 1994).Ðàçðåøèìîñòü çàäà÷è ÊîøèIII) Íà âòîðîì ýòàïå ìû ïîëó÷èëè òîëüêî ôîðìàëüíîå ðåøåíèåçàäà÷è Êîøè (7), òàê êàê(P0t k−1ky (t) = ∞k=1 (k−1)! A y0 = Ay (t),y (0) = A0 y0 = y0∀y0Ptk kÒàêèì îáðàçîì, y = y (t) (= ∞k=1 k! A y0 )íåïðåðûâíî-äèôôåðåíöèðóåìàÿ âåêòîð ôóíêöèÿ, ïðè÷åì0y (t) = Ay (t), t ∈ R 1 .Òàêèì îáðàçîì, èíòåðåñóþùåå íàñ ðåøåíèå çàäà÷è Êîøè (2)îïðåäåëÿåòñÿ ôîðìóëîé (8).  ñèëó òåîðåìû åäèíñòâåííîñòèîíî îïðåäåëåíî îäíîçíà÷íî.IV) Äîêàæåì òåïåðü íåïðåðûâíóþ çàâèñèìîñòü ðåøåíèÿ (8)çàäà÷è Êîøè (2) îò íà÷àëüíûõ äàííûõ y0 ∈ R N (èëè C N ). ñàìîì äåëå, ïóñòü y = y I ,II = y I ,II (t) - ðåøåíèå çàäà÷è Êîøè(2), îòâå÷àþùåå íà÷àëüíûì óñëîâèÿìÐàçðåøèìîñòü çàäà÷è Êîøèy I ,II (0) = y0I ,II .4 = 4(t) = y I (t) − y II (t),40 = 4(0) = y0I − y0II .Î÷åâèäíî, ÷òî 04 = A4, t ∈ R 1 ,4(0) = 40 .(9)Ðàññìàòðèâàÿ ðåøåíèå çàäà÷è Êîøè (9) íà ëþáîì èíòåðâàëå(−T , T ), T > 0, ìû äëÿ âåêòîð-ôóíêöèè 4 = 4(t) èìååì||4(t)||2 ≤ e M·|t| ||40 ||2 ≤ e M·T ||40 ||2 .(10)Îòêóäà ñëåäóåò, ÷òî ∀ε > 0 ∃δ = δ(ε, T ) > 0 òàêîå, ÷òî åñëè||40 || ≤ δ , òî ||4(t)|| ≤ ε íà (−T , T ), ïðè÷åì δ = e 0.5εM·T (ò.å.δ = δ(ε, T )), ÷òî è íóæíî.Ðàññìîòðèì âíîâü ïðèìåð 2 (ôîðìóëà (8)) èç 1:0y = Ay , y0 −1ãäå y = 1 , A =.y21 0Ðàçðåøèìîñòü çàäà÷è Êîøè(11)Äëÿ íàõîæäåíèÿ ðåøåíèÿ çàäà÷è Êîøè ýòîé ñèñòåìûâîñïîëüçóåìñÿ ôîðìóëîé (8).Çàìåòèì, ÷òî ïðè k = 0, 1, ...I2 , åñëè k = 2m, m - ÷åòíîå èëè 0,−I2 , åñëè k = 2m, m - íå÷åòíîå,Ak = A, åñëè k = 2m + 1, m - ÷åòíîå èëè 0,−A, åñëè k = 2m, m - íå÷åòíîå.Òîãäày = y (t) =∞ kXtk=0m t 2mm=0 (−1) (2m)!Pm t 2m+1− ∞m=0 (−1) (2m+1)!P∞=k!tt2t3Ak y0 = {I2 + A − I2 − A + ...}y0 ==costsin t1−2!3!m t 2m+1m=0 (−1) (2m+1)!P∞m t 2mm=0 (−1) (2m)!P∞!y0 =−sintcost · y10− sint · y2y0 ==costsint · y10 −cost · y20Ðàçðåøèìîñòü çàäà÷è Êîøè= y10cost−sint+ y20.costsint yÇäåñü y0 = 10 - âåêòîð íà÷àëüíûõ äàííûõ.y20Çàìåòèì òàêæå, ÷òî âåêòîðû cost−sint[1][2]y =,y =sintcostóäîâëåòâîðÿþò âåêòîðíîé ñèñòåìå (11).3.