1612135124-c82f95de5ae5b8e93bc9da7770e8f930 (829504), страница 3
Текст из файла (страница 3)
+ α2N 6= 0, ÷òî õîòÿ áû âîäíîé òî÷êå t = t ∗NXαk · y [k ] (t ∗ ) = 0.k =1Òîãäà äëÿ âåêòîðóíêöèèz = z (t ) =NXk =1αk · y [k ] (t ),Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéÿâëÿþùåéñÿ ðåøåíèåì çàäà÷è Êîøè ′z = Az , t ∈ R 1 ;z (t ∗ ) = 0,âûïîëíÿåòñÿ óñëîâèå:òî åñòü è ïðèz (t ) ≡ 0,t=0z (0) =NXk =1[k ]αk · y0=0⇒ ïðîòèâîðå÷èå.Ñ äðóãîé ñòîðîíû, êàêèå áû N + 1 ðåøåíèé çàäà÷è Êîøè (1)ìû íè âçÿëè, ìîæíî óòâåðæäàòü, ÷òî ∃ βk , k = 1,...,N +1, íå âñåðàâíûå íóëþ è òàêèå, ÷òî:N +1Xk =1[k ]βk · y0=0⇒Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèé⇒ βi = 0, i = 1,...,N +1.Òîãäà â ñèëó òåîðåìû åäèíñòâåííîñòèz (t ) =N +1Xk =1βk · y [k ] (t ) ≡ 0∀t ∈ R 1 .Èòàê, âñå ðåøåíèÿ çàäà÷è Êîøè (1) îáðàçóþò N - ìåðíîåëèíåéíîå ïðîñòðàíñòâî.Òåïåðü â êà÷åñòâå âàæíîãî ïðèìåðà ðàññìîòðèì îäíî óðàâíåíèåïîðÿäêà N ñ ïîñòîÿííûìè êîýèöèåíòàìè (ñì.
1):Lx = x (N ) + a1 x (N −1) + ... + aN −1 x′+ aN x = 0.(3)Îáîçíà÷èìy1 = x , y2 = y1 = x , ..., yN = yN −1 = x (N −1) .′′′Òîãäà, â ñèëó ñîîòíîøåíèé (3),(4) ìîæíî âûïèñàòü òàêóþ(4)Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéëèíåéíóþ ñèñòåìó ñ ïîñòîÿííûìè êîýèöåíòàìè:y1′ = y2y1′ = y3...y = yN N′ −1yN = −a1 yN − a2 yN −1 − ... − aN −1 y2 − aN y1 .(5)Î÷åâèäíî, ÷òî äëÿ ëþáîãî ðåøåíèÿ x = x (t ) óðàâíåíèÿ (3)ìîæíî ïîñòðîèòü N -ìåðíûé âåêòîð y (ñì. (4)):yxx′y1 .. = y (t ) = .
= . , .. yNóäîâëåòâîðÿþùèé ñèñòåìå (5).x N −1Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéÎáðàòíî, åñëè íàì èçâåñòíî êàêîå-ëèáî ðåøåíèå ñèñòåìû (5): y= y (t ) = y1.. ,.yNòî, îáîçíà÷àÿ ïåðâóþ êîìïîíåíòó y1 âåêòîðà ÷åðåç x , ìû èçïåðâûõ N − 1 óðàâíåíèé ñèñòåìû (5) íàéäåì ïîñëåäîâàòåëüíî:y2 (t ) = x (t ), ..., yN (t ) = x N −1 (t ).′Ïîñëåäíåå æå óðàâíåíèå ñèñòåìû (5) ïåðåïèøåì òàê:x (N ) (t ) + a1 x (N −1) (t ) + ... + aN x (t ) = 0,òî åñòü y1 = y1 (t )(= x (t )) óäîâëåòâîðÿåò (3).Èòàê, óðàâíåíèå (3) è ñèñòåìà (5) ýêâèâàëåíòíû.Ñèñòåìó (5) çàïèøåì â âåêòîðíîì âèäåy′= AyÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéñ ìàòðèöåé A:0 0A= 0 0−aN1000−aN −10 ...1 ......0 ...0 ......0010− a200 .0 1 − a1Äëÿ óðàâíåíèÿ (3) ïîñòàâèì çàäà÷ó Êîøè (ñì. 1):Lx = 0, t ∈ R 1 ;x (0) = x1 , x ′ (0) = x2 ,... , x (N −1) (0) = xN ,(6)ãäå xk , k = 1,...,N - íåêîòîðûå ïîñòîÿííûå.Çàìå÷àíèå 1.
Êàê è â ñëó÷àå çàäà÷è Êîøè (2) èç 2, ìûïîëàãàåì, íå íàðóøàÿ îáùíîñòè, ÷òî íà÷àëüíûå óñëîâèÿ â (6)ïîñòàâëåíû ïðè t = 0.Ïîíÿòíî, ÷òî çàäà÷à Êîøè (6) ýêâèâàëåíòíà çàäà÷å Êîøè äëÿÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéñèñòåìû (5)Çäåñüy0y ′ = Ay , t ∈ R 1 ,y (0) = y0 .(7)x1 = ... .xNÒîãäà èç îäíîçíà÷íîé ðàçðåøèìîñòè (êîððåêòíîñòè) çàäà÷èÊîøè (7) ñëåäóåò îäíîçíà÷íàÿ ðàçðåøèìîñòü (êîððåêòíîñòü)çàäà÷è Êîøè (6), à èìåííî: ∀ ïîñòîÿííûõ xk , k = 1,...,N ∃!ðåøåíèå x = x (t ) çàäà÷è Êîøè (6). ñëó÷àå xk = 0, k = 1,...,N , òàêèì ðåøåíèåì ÿâëÿåòñÿ x (t ) ≡ 0.Î÷åâèäíî, ÷òî ðåøåíèÿ çàäà÷è Êîøè (6) îáðàçóþò ëèíåéíîåïðîñòðàíñòâî ðàçìåðíîñòè N .Ïðèìåðû. y0 −1y11d1) dt(ñì.
1,2).=y2y21 0 2 ìû âûÿñíèëè, ÷òî ýòà ñèñòåìà èìååò äâàÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéëèíåéíîíåçàâèñèìûõ ðåøåíèÿ:y[ 1](t ) =y1[1]y2[1][2]y [2](t ) = yy1[2]2ïîñêîëüêó ïðè==os t,sin t− sin t,os tt = 0 âåêòîðûy0[1] 10[2]=è y0 =01ëèíåéíî íåçàâèñèìû.Ñëåäîâàòåëüíî, âåêòîðû y [1] (t ), y [2] (t ) ìîæíî ïðèíÿòü çà áàçèñ âïðîñòðàíñòâå ðåøåíèé (åãî dim = 2), à çíà÷èò, ðåøåíèå çàäà÷èÊîøè äëÿ ýòîé ñèñòåìû ñ ïðîèçâîëüíûìè íà÷àëüíûìèóñëîâèÿìè y1 (0)y (0) = y (0) = y0 = yy10202Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéïðåäñòàâèìî òàê (ñì.
2):y (t ) =y1 (t )y2 (t )= y10 · y [1] (t ) + y20 · y [2] (t ).2) àññìîòðèì óðàâíåíèåx′′′− 4x + x + 6x = 0.′′′Íåïîñðåäñòâåííî íàõîäèì ÷àñòíûå ðåøåíèÿ:x = e 2t ,x = e 3t .Ïîêàæåì, ÷òî îðìóëà(8)x (t ) = e −t ,x (t ) = C1 e −t + C2 e 2t + C3 e 3t ,ãäå Ci ∈ R 1 - ïðîèçâîëüíû, ïîçâîëÿåò íàéòè ðåøåíèå çàäà÷èÊîøè ñ ëþáûìè íà÷àëüíûìè äàííûìè (òî åñòü ýòà îðìóëàîïðåäåëÿåò îáùåå ðåøåíèå óðàâíåíèÿ (8), ñì.
1). ñàìîì äåëå, òàê êàê ðåøåíèå çàäà÷è Êîøè äëÿ (8)îäíîçíà÷íî îïðåäåëåíî íà÷àëüíûìè çíà÷åíèÿìè x1,2,3 , òîÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéíåîáõîäèìî, ÷òîáûx (0) = C1 + C2 + C3 = x1 ,x (0) = −C1 + 2C2 + 3C3 = x2 ,′′x (0) = C1 + 4C2 + 9C3 = x3 .Òàê êàê det 6= 0 ⇒ C1,2,3 íàõîäÿòñÿ!′3) Íàêîíåö, åùå ðàç âñïîìíèì óðàâíåíèåx′= axèç 1.Ïðîñòðàíñòâî ðåøåíèé çàäà÷è Êîøè äëÿ ýòîãî óðàâíåíèÿîäíîðîäíî, à îáùåå ðåøåíèå ïðåäñòàâëÿåòñÿ â âèäå (ñì. 1)x = C · e at ,ãäå C - ïðîèçâîëüíàÿ ïîñòîÿííàÿ.åøåíèå çàäà÷è Êîøè òàêîâî:x (t ) = x1 · e at , x (0) = x1 .Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéÂåðíåìñÿ âíîâü ê çàäà÷å Êîøè (7).
Ïóñòü {y [k ] (t ), k = 1,...,N } ñèñòåìà èç N ëèíåéíîíåçàâèñèìûõ ðåøåíèé çàäà÷è Êîøè (1).Ñîñòàâèì ìàòðèöóY (t ) = (y [1] (t ), ..., y [N ] (t )).Î÷åâèäíî, ÷òî detY (t ) 6= 0 ∀t ∈ R 1 , â òîì ÷èñëå è ïðè t = 0:detY (0) 6= 0, ãäåY (0) = (y0[1] , ..., y0[N ] ) = Y0 - ìàòðèöà, ñîñòàâëåííàÿ èç Nëèíåéíîíåçàâèñèìûõ íà÷àëüíûõ âåêòîðîâ.Òàê êàêd [k ]y (t ) = Ay [k ] (t ), k = 1,...,N,dtòî ýòè N âåêòîðíûõ ñèñòåì ìîæíî îáúåäèíèòü â îäíóìàòðè÷íóþ ñèñòåìó (ñì. 1):Y (t ) = A · Y′è äëÿ íåå ïîñòàâèòü çàäà÷ó Êîøè: ′Y = AY ,Y (0) = Y0 ,t ∈ R1(9)Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéãäå Y0 - ïðîèçâîëüíàÿ íåâûðîæäåííàÿ ìàòðèöà (õîòÿ,åñòåñòâåííî, çàäà÷ó Êîøè (9) ìîæíî ðàññìàòðèâàòü ñ ëþáîéìàòðèöåé Y0 ).Îïðåäåëåíèå 1.
Ìàòðèöà Y (t ) íàçûâàåòñÿ óíäàìåíòàëüíîéìàòðèöåé ðåøåíèé çàäà÷è Êîøè (1).Äëÿ çàäà÷è Êîøè (9) èìååò ìåñòî îäíîçíà÷íàÿ ðàçðåøèìîñòü(êîððåêòíîñòü, ñì. 2): äëÿ ëþáîé ìàòðèöû Y0 , detY0 6= 0∃Y (t ), ýëåìåíòû êîòîðîé ÿâëÿþòñÿ íåïðåðûâíûìè èíåïðåðûâíîäèåðåíöèðóåìûìè óíêöèÿìè, îïðåäåëåííûìè∀t ∈ R , è òàêàÿ, ÷òîY (t ) = AY (t ), Y (0) = Y0 .′Ýòèìè óñëîâèÿìè Y (t ) îïðåäåëåíà îäíîçíà÷íî.Äîêàæåì ñëåäóþùóþ îðìóëó: íà ðåøåíèÿõ çàäà÷è Êîøè (9)âûïîëíåíî ñîîòíîøåíèå△(t ) = △0 · exp {Tr (A) · t },(10)Ïðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéãäå △(t ) =detY (t ), △0 =detY0 ,Tr (A) =NXk =1akk- ñëåä ìàòðèöû A.Êñòàòè, èç (10) ñëåäóåò óòâåðæäåíèå î òîì, ÷òî ìàòðèöà Y (t ),ñîñòàâëåííàÿ èç N ëèíåéíîíåçàâèñèìûõ ðåøåíèé çàäà÷èÊîøè (7), íåâûðîæäåííàÿ.Âåðíåìñÿ ê (10).
Èìååì:y11 . . . y 1N .... .. NX′′′ △ (t ) =det yk 1 . . . yk N . .... k =1 .. yN 1 . . . yNNÒàê êàêykl′=NXj =1akj · yjl (t ), l = 1,...,N,òîÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéy11... .. . ′det yk 1 .. ....yN 1...y 1Ny11 .... ..
NX′yk N = akj · det yj 1 .... j =1 .. yN 1yNN.........y 1N.. . yj N =.. . yNN= akk · detY (t ) = akk · △(t ).Ñëåäîâàòåëüíî,△ (t ) = △(t ) · Tr (A),′òî åñòü (èç 1)△(t ) = △(0) · e Tr (A)t = △0 · e Tr (A)t ,÷òî è òðåáîâàëîñü! çàêëþ÷åíèå îòìåòèì, ÷òî, ïîñêîëüêó âñå ðåøåíèÿ çàäà÷èÊîøè (7) îáðàçóþò ëèíåéíîå ïðîñòðàíñòâî ðàçìåðíîñòè N , òîëþáîå ðåøåíèå ýòîé çàäà÷è - ëèíåéíàÿ êîìáèíàöèÿ ñòîëáöîâÏðîñòðàíñòâî è óíäàìåíòàëüíàÿ ñèñòåìà ðåøåíèéìàòðèöûY (t ):y (t ) =ãäåCNXi =1Ci y [i ](t ) = Y (t ) · C ,- ïðîèçâîëüíûé âåêòîðC1.
C = .. .CN òî æå âðåìÿ ëåãêî âûðàçèòü âåêòîðy0 = Y (0)Còî åñòüC÷åðåçy0 := Y0 C ,C = Y0−1 · y0 .Ôîðìóëà (11) ïðåäñòàâëÿåò ñîáîé îáùåå ðåøåíèå ëèíåéíîé′ñèñòåìû Y = AY .(11)Ãëàâà I. Ëèíåéíûå ñèñòåìû ñ ïîñòîÿííûìèêîýôôèöèåíòàìè. Ëèíåéíîå óðàâíåíèå ñ ïîñòîÿííûìèêîýôôèöèåíòàìè âûñîêîãî ïîðÿäêà. Çàäà÷à Êîøè.Çàäà÷à Êîøè äëÿ ëèíåéíûõ ñèñòåì ñ ïåðåìåííûìèêîýôôèöèåíòàìè. Àïðèîðíûå îöåíêè1.
Ïðåäâàðèòåëüíûå ñâåäåíèÿÎïðåäåëåíèå 1. Îáûêíîâåííûì äèôôåðåíöèàëüíûìóðàâíåíèåì n-îãî ïîðÿäêà íàçûâàåòñÿ ñîîòíîøåíèå âèäà0F (t, y , y , ..., y (n) ) = 0.(1)Ðåøåíèåì óðàâíåíèÿ (1) íà èíòåðâàëåôóíêöèÿy = ϕ(t),îïðåäåëåííàÿ íà(a, b) íàçûâàåòñÿ(a, b) âìåñòå ñî ñâîèìèïðîèçâîäíûìè äî n-îãî ïîðÿäêà âêëþ÷èòåëüíî è òàêàÿ, ÷òîïîäñòàíîâêà ôóíêöèèòîæäåñòâî äëÿtèçy = ϕ(t)(a, b).â (1) ïðåâðàùàåò åãî âÇàìå÷àíèå 1. Âñþäó (åñëè íå îãîâîðåíî îñîáî) ïîäïîíèìàåìêîíå÷íûéèíòåðâàë.Ïðåäâàðèòåëüíûå ñâåäåíèÿ(a, b)Ïðîñòåéøèå ïðèìåðû ÎÄÓ - ëèíåéíûå óðàâíåíèÿ ñïîñòîÿííûìè êîýôôèöåíòàìè, ò.å. êîãäà â (1) ôóíêöèÿëèíåéíà ïîF0y , y , ..., y (n) :0Ly = y (n) + a1 y (n−1) + ...
+ an−1 y + an y = 0,ïðè÷åìa1 , ..., an(2)- íåêîòîðûå ïîñòîÿííûå (âåùåñòâåííûå èëèêîìïëåêñíûå).(2) - ëèíåéíîå îäíîðîäíîå ÎÄÓ ïîðÿäêà n ñ ïîñòîÿííûìèêîýôôèöåíòàìè.Çàìå÷àíèå 2. ×åðåçLâ (2) îáîçíà÷åí äèôôåðåíöèàëüíûéîïåðàòîðL=äåéñòâóþùèé íàd n−1ddn+ a1 n−1 + ... + an−1 + an ,ndtdtdtôóíêöèþ y = y (t).Åñëè âìåñòî (2) ðàññìîòðåòü óðàâíåíèå ñïðàâîé ÷àñòüþLy = f (t),ãäåf = f (t)- èçâåñòíàÿ ôóíêöèÿ îò t , òî (4) - ëèíåéíîåíåîäíîðîäíîå óðàâíåíèå.(3)Ïðåäâàðèòåëüíûå ñâåäåíèÿ(4)Ïðèìåð 1.Íàéòè òàêèå êðèâûå íà ïëîñêîñòè(t, y ),÷òîáû tg óãëà íàêëîíàêàñàòåëüíîé (ïî îòíîøåíèþ ê ïîëóîñè Ît) â ëþáîé òî÷êå ýòèõêðèâûõ ðàâíÿëñÿ îðäèíàòåyýòîé òî÷êè, óìíîæåííîé íàíåêîòîðîå âåùåñòâåííîå ÷èñëîa(ñì. Ðèñ.)yy = y(t)at0Ðèñ.Ïðåäâàðèòåëüíûå ñâåäåíèÿ0C00= y ⇒ y = ay ⇒ (e −at y ) = 0 ⇔ e −at y = C ,Òàê êàê tg αãäå- ïðîèçâîëüíàÿ âåùåñòâåííàÿ êîíñòàíòà⇒ y = y (t) = Ce at(5)- óðàâíåíèå ñåìåéñòâà êðèâûõ.Îïðåäåëåíèå 2.
Ðåøåíèå äèôôåðåíöèàëüíîãî óðàâíåíèÿn-îãîïîðÿäêà (1), çàâèñÿùåå îò n ïðîèçâîëüíûõ ïîñòîÿííûõCi , i=1, ..., n,y = ϕ(t, C1 , ..., Cn ),íàçûâàåòñÿîáùèì ðåøåíèåìýòîãî óðàâíåíèÿ.Òàêèì îáðàçîì, ñîîòíîøåíèå (5) çàäàåò îáùåå ðåøåíèåóðàâíåíèÿ0y = ay .Îïðåäåëåíèå 3. Çàäà÷åé Êîøè äëÿ óðàâíåíèÿ (1) íàçûâàåòñÿçàäà÷à î íàõîæäåíèè òàê íàçûâàåìîãîy = ϕ(t)÷àñòíîãî ðåøåíèÿóðàâíåíèÿ (1), óäîâëåòâîðÿþùåãîíà÷àëüíûìt = t0 , t0 ∈ (a, b):0ϕ(t0 ) = ϕ0 , ϕ (t0 ) = ϕ1 , ϕ(n−1) (t0 ) = ϕn−1 ,ãäå ϕ0 , ..., ϕn−1 - íåêîòîðûå çàäàííûå ïîñòîÿííûå.óñëîâèÿìïðèÏðåäâàðèòåëüíûå ñâåäåíèÿÄëÿ óðàâíåíèÿãäåy0y 0 = ay çàäà÷à Êîøè ôîðìóëèðóåòñÿ 0y = ay ,t ∈ (a, b);y (t0 ) = y0 , t0 ∈ (a, b),òàê:(6)- íåêîòîðàÿ çàäàííàÿ ïîñòîÿííàÿ.
Çíàÿ ôîðìóëó îáùåãîðåøåíèÿ óðàâíåíèÿy 0 = ay(ò.å. (5)) ìîæíî ðåøèòü çàäà÷óÊîøè (6).Èìååì:y0 = Ce at0 ⇒ C = y0 e −at ⇒èñêîìîå ðåøåíèå òàêîâî:y = y0 e a(t−t0 ) .(7)Ãåîìåòðè÷åñêèé ñìûñë ðåøåíèÿ çàäà÷è Êîøè (6): èç âñåõêðèâûõ, îïèñûâàåìûõ ôîðìóëîé (5) íàäî âûáðàòü òàêóþ,êîòîðàÿ ïðîõîäèò ÷åðåç çàäàííóþ òî÷êó(t0 , y0 )íà ïëîñêîñòè.Çàìå÷àíèå 3. Ðåøåíèå çàäà÷è Êîøè (6) îïðåäåëåíî ïðè âñåõt ∈ R n , ∀t0 ∈ R 1 , y0 ∈ R 1 .Áóäåì ðàññìàòðèâàòü è ñèñòåìû.