RACMET (743475)

Файл №743475 RACMET (Рациональные методики поиска оптимальных путей сетевых графиков и их автоматизация на ЭВМ)RACMET (743475)2016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Реферат

Курсовой проект 43 с., 5 рис., 6 блок-схем, 1 таблица, 1 источник.

СЕТЕВОЙ ГРАФИК, АНАЛИЗ ОПТЕМАЛЬНОСТИ СЕТЕВЫХ ГРАФИКОВ, РАЦИОНАЛЬНЫЕ МЕТОДИКИ ПОИСКА ОСОБЫХ ПУТЕЙ СЕТЕВЫХ ГРАФИКОВ, АВТОМАТИЗАЦИЯ АНАЛИЗА СЕТЕВЫХ ГРАФИКОВ НА ЭВМ.

Направление работы – изучение математических и алгоритмических аспек­тов анализа оптимальности сетевых графиков.

Основная цель работы – найти и доказать рациональные методики поиска особых путей сетевых графиков, легко поддающиеся автоматизации на ЭВМ и со­кращающие затраты на сетевое планирование, за счёт уменьшения сроков разра­ботки оптимальных сетевых графиков.

Используемый в работе метод исследований – аппарат формальной логики, позволяющий осуществлять математические доказательства с минимальным при­влечением, для этого, формул.

В ходе работы получены блок-схемы алгоритмов расчёта параметров сете­вых графиков и поиска их особых путей, которые предполагается использовать при создании конкретной программы анализа оптимальности сетевых графиков на любом из известных языках программирования.

Новизна работы состоит в том, что разработанные методы позволяют найти критический и наикратчайший пути сетевого графика без перебора всех возмож­ных вариантов, что даёт: во-первых – высокую скорость разработки оптимальных сетевых графиков, а во-вторых – возможность точного ответа на вопрос об оптимальности уже готового сетевого графика и высокую степень оптимизации сетевых графиков по длительности в случае их неоптимальности.

Содержание

Введение 4

1 Постановка задачи 6

2 Теоретические основы сетевого планирования 9

3 Обоснование рациональных методик поиска особых путей сете­вых графиков 15

4 Автоматизация анализа оптимальности сетевых графиков на ЭВМ 22

4.1 Представление сетевого графика в машинной форме 22

4.2 Автоматизация расчёта параметров сетевого графика 27

4.3 Автоматизация процесса поиска особых путей сетевого гра­фика 40

Заключение 42

Список использованных источников 43

Введение

Одним из основных экономических показателей, определяющих себестои­мость проведения проектных, научно-исследовательских, опытно-конструктор­ских и других, поддающихся экономическому анализу, работ, связанных с раз­ра­боткой и внедрением на предприятие новой техники или с организацией и управ­лением деятельности всего предприятия, является общая продолжительность их выполнения. Естественно, что в рамках некоторого рассматриваемого проекта, эта продолжительность существенно зависит от структуры упорядочивания отдель­ных, входящих в него работ. Поэтому, построение оптимальной структуры упоря­дочивания проектных работ является основной задачей сетевого планирования.

В основе решения указанной задачи лежит анализ смыслового содержания работ и ус­тановление взаимо­связей между ними, что позволяет выявить возмож­ность их параллельного выполнения. Последнее, является основным фактором со­кращения дли­тельности всего проекта.

Распространены два метода оптимального планирования или упорядочива­ния проектных работ. Один из методов, основан на построении ленточного гра­фика, где каждой работе присваи­ваются такие характеристики как время начала её выполнения, её длительность, которые затем, в виде параллельных от­резков, на­но­сятся на шкалу времени. Другой из ме­тодов, ос­нован на построении сетевого графика, где структура упорядочивания работ изо­бражается графически в виде сигнального графа.

Выбор того или иного метода планирования зависит от числа работ, входя­щих в состав проекта. Принято, что если число работ превышает 25, то наиболее наглядный и удобный метод опти­мального планирования – есть метод, основан­ный на построении сетевого графика. На практике этот метод более употребите­лен, в силу того, что число работ, входящих в некоторый рассматриваемый проект, как правило, достигает не­скольких сотен.

Для сетевого графика, существует два понятия оптимальности: оп­тималь­ность по структуре и оптимальность по длительности. Оптимальность по струк­туре характеризуется степенью параллельности исполнения отдельных ра­бот. Оп­тимальность по длительности характеризуется рациональным распре­деле­нием тру­довых ресурсов между параллельными видами работами, которое обеспечивает при­мерно равную их продолжительность.

На сегодняшний день нет, и не предвидится появление, строгих методов и алгоритмов построения оптимального сетевого графика, поддающихся автомати­зации на ЭВМ. Это связано с тем, что процесс построения оптимального сетевого графика требует от экономиста-проектировщика опыта и интуитивных свойств мышления, реализовать которые на ЭВМ практически не возможно.

По другому обстоит дело с задачей анализа оптимальности уже готового се­тевого графика. Надо сказать, что с этой задачей экономист-проектировщик стал­кивается систематически при оптимизации сетевого графика по длительности, ко­гда каждое очередное принятое решение о перераспределении трудовых ресурсов требует проверки на достижение оптимального варианта. Очевидно, что если ав­томатизи­ровать процесс решения рассматриваемой задачи, то это существенно снизит про­должитель­ность разработки сетевого графика, а значит и затраты на се­тевое пла­нирование в целом. Так вот, задача анализа оптимальности сетевого гра­фика математиче­ски формализуема и, с некоторыми трудностями, решаема на ЭВМ. В данном курсовом проекте, как раз и будут предложены и обоснованы ра­циональные методики решения задачи анализа оптимальности сетевых графиков, легко автоматизируемые на ЭВМ.

1Постановка задачи

Как правило, экономисту-проектировщику не представляется сложным, с первого раза, построить оптимальный по структуре сетевой график, когда будет обеспечена максимальная параллельность исполнения отдельных работ. Всё зави­сит от понимания им сущности и содержания каждой работы, входящей в состав сетевого графика.

Труднее обстоит дело с распределением трудовых ресурсов по отдельным видам работ, от которого зависит оптимальность сетевого графика по длительно­сти. Проблема в том, что практически невозможно предугадать, как от­разится на длительности всего проекта и соотношении длительностей различных путей его сетевого графика, перенос трудовых ресурсов с одних работ на другие, в резуль­тате которого, при неизменной трудоемкости работ, происходит увеличение дли­тельности первых и уменьшение длительности вторых. В таких условиях, ос­та­ётся только один способ оптимизации сетевого графика по длительности. Этот способ основан на методе проб и ошибок, когда, первостепенную важность играет задача проверки и анализа оптимальности уже готового, полностью рассчитанного сете­вого графика, с целью выявления ошибок в распределении трудовых ресурсов. Рассмотрим эту задачу и связанные с ней трудности подробнее.

Для сетевого графика существуют понятия пути и его продолжительности. Под путем понимается любая цепочка непрерывно следующих, друг за другом, последовательных во времени работ, от начала проекта до его завершения. Под длительностью пути понимается суммарная длительность всех, входящих в него, последовательных работ. Более понятными, данные определения станут при рас­смотрении следующего раздела. Сейчас же, важно другое, что каждый сетевой график имеет в своём составе два особых пути: критиче­ский и наикратчайший. Критическим путём является путь, имеющий наибольшую продолжительность среди других возможных путей сетевого графика. Наикрат­чайшим путём является путь, который, в отличие от критического пути, имеет наименьшую продолжи­тельность во всём сетевом графике. На понятиях этих двух путей основан наибо­лее простой и распространенный критерий оптимальности сетевого графика, фор­мализуемый следующим образом:

, (1.1)

  1. – коэффициент напряжённости наикратчайшего пути;

  1. – длительность наикратчайшего пути, ;

  2. – длительность критического пути, .

Из критерия (1.1) следует, что некоторый рассматриваемый сетевой график принимается оптимальным, если отношение длительности его наикратчайшего пути к длительности его критического пути не менее 0.7, или, что тоже самое, если длительность наикратчайшего пути отличается от длительности критиче­ского пути не более чем на 30%.

Забегая вперёд, можно сказать, что длительность критического пути, легко найти путём расчёта некоторых, принятых параметров сетевого графика, которые будут подробно рассмотрены в следующем разделе. Длитель­ность же наикрат­чайшего пути, в общем случае неизвестна, и для её нахождения требуется сумми­ровать длительности всех, входящих в него работ.

Теперь встаёт проблема, – а как найти работы, принадлежащие наикратчай­шему пути, чтобы иметь возможность просуммировать их длительности? Решить данную проблему, для человека, интуитивно или простым перебором вариантов, очень проблематично, особенно при большой, сильно разветвленной структуре се­тевого графика. Зачастую и ЭВМ справиться с этой задачей не может, в силу того, что её быстродействие ограничено, а число всех возможных вариантов путей сете­вого графика, уже при стах событиях, может достигать миллионов или даже сотен миллионов.

Так вот, оказывается, эта проблема решаема, причём без перебора вариантов и срав­нительно быстро даже для человека, не говоря уже об ЭВМ. Основной це­лью дан­ной курсового проекта, как раз и является цель показать, а точнее доказать рациональные ме­тодики поиска особых путей сетевого графика, которые не только дают возмож­ность проверки его оптимальности, но и позволяют рационально вы­полнить его оптимизацию по длительности. Последнее заключается в том, что если экономист-проектировщик будет знать, как проходят особые пути сетевого графика, то он сможет, в целях оптимизации, правильно перераспределить трудо­вые ресурсы, а именно – перенести ресурсы с работ, принадлежащих наикратчай­шему пути, на работы, принадлежащие критическому пути, и тем самым уровнять длительности этих путей, для обеспечения выполнения критерия оптимальности (1.1).

2Теоретические основы сетевого планирования

Прежде, чем преступать к обоснованию рациональных методик поиска осо­бых путей сетевого графика, необходимо напомнить, что вообще собой представ­ляет сетевой график, и какими основными параметрами он характеризу­ется.

Итак, сетевой график – есть математическая модель упорядочивания про­ектных работ типа “Сигнальный граф” (см. пример на рис.Error: Reference source not found). Любой сигналь­ный граф состоит только из двух элементов: дуг и вершин. В контексте сетевого пла­нирования, дугами являются отдельные работы, изображаемые на сетевом графике в виде стрелок так, что начала стрелок, соответствует началам выполне­ния работ, концы стрелок – их завершению. Вершинами сигнального графа явля­ются так на­зывае­мые события, которые изображаются на сетевом графике в виде кружков, с поряд­ковыми номерами в нижних квадрантах. Как раз события сете­вого графика и служат для целей упорядочивания проектных работ, которое за­ключается в том, что исходящая из неко­торого события работа не может начаться, пока не завер­шаться все входящие в него работы.

Существует масса правил, узаконенных стандартом, придерживаться кото­рых необходимо при построении сетевых графиков. Наиболее важные из них:

  • Любой сетевой график должен иметь начальное событие, ра­боты из ко­то­рого только исходят, и конечное событие, в которое они только входят;

  • Любой путь сетевого графика должен быть полным. То есть, любая це­почка, непрерывно следующих друг за другом, последовательных во времени ра­бот, должна начинаться в исходном событии сетевого графика, а заканчиваться в конечном;

  • Сетевой график не должен иметь замкнутых петель. То есть, недопус­тимо, чтобы конец некоторой работы являлся бы началом другой работы, предше­ствующей первой по времени.

Имея только структуру сетевого графика, невозможно разрешить вопрос о его оптимальности. Требуется проводить расчеты еще целого ряда, принятых па­раметров. К этим параметрам относятся:

  • р
    анние и поздние сроки наступления событий;

  • ранние и поздние сроки начала и окончания работ;

  • резервы времени работ и событий.

Ранний срок наступления события – это минимально возможный срок, необ­ходимый для выполнения всех работ, предшествующих данному событию. Расчёт ранних сроков наступления событий ведут в порядке – от начального собы­тия проекта (с номером 0) до завершающего. При расчёте принимают, что ран­ний срок наступления начального события равен 0. Для определения ран­него срока наступ­ления -го события пользуются правилом, математически записывае­мым так:

, (2.1)

  1. – ранний срок наступления рассматриваемого события, ;

  1. – номер рассматриваемого события;

  2. – номера предшествующих событий, соединенных с рассматривае­мым работами;

  3. – ранний срок наступления -го предшествующего события, ;

  4. – длительность работы, соединяющей -е предшествующее собы­тие с рассматриваемым, .

Таким образом, ранний срок наступления -го события – есть максимально воз­можная сумма из сумм ранних сроков наступления предшествующих событий и длитель­ностей работ соединяющих предшествующие события с рассматривае­мым. Забегая вперёд, надо сказать, что эти суммы равны ранним срокам окончания соответствующих работ. Тогда, ранний срок свершения события – есть макси­мальный из ранних сроков окончания, входящих в него работ.

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее