RACMET (743475), страница 2

Файл №743475 RACMET (Рациональные методики поиска оптимальных путей сетевых графиков и их автоматизация на ЭВМ) 2 страницаRACMET (743475) страница 22016-08-02СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Поздний срок наступления события – это максимально допустимый срок на­ступления рассматриваемого события, определяемый из условия, что после насту­пления этого события в свой поздний срок остаётся достаточно времени, чтобы выполнить следующие за ним работы. Расчёт поздних сроков наступлений собы­тий ведут в обратном порядке – от завершающего события проекта до на­чального (с номером 0). При расчёте принимают, что поздний срок на­сту­пления завершаю­щего события совпадает с его ранним сроком наступле­ния. Для расчёта позднего срока наступления -го события пользуются правилом, матема­тически записывае­мым так:

, (2.2)

  1. – поздний срок наступления рассматриваемого события, ;

  1. – номер рассматриваемого события;

  2. – номера последующих событий, соединённых с рассматриваемым работами;

  3. – поздний срок наступления -го последующего события, ;

  4. – длительность работы, соединяющей -е последующее событие с рассматриваемым, .

Таким образом, поздний срок наступления -го события – есть минимально воз­можная разность из разностей поздних сроков наступления последующих событий и дли­тельностей работ, соединяющих последующие события с рассматриваемым. Забегая вперёд, необходимо сказать, что эти разности равны позд­ним срокам на­чала соответствующих работ. Тогда, поздний срок свершения события – есть ми­нимальный среди поздних сроков начала, исходящих из него работ.

Зная ранний и поздний сроки наступления события, можно определить ре­зерв времени события:

, (2.3)

  1. – резерв времени рассматриваемого события, .

Резерв времени события показывает насколько можно отсрочить наступление со­бытия по сравнению с его ранним сроком наступления без изменения об­щей про­должительности всего проекта.

Ранний срок начала работы совпадает с ранним сроком наступления её на­чального события, а ранний срок окончания работы превышает его на величину продолжительности этой работы:

; (2.4)

, (2.5)

  1. – ранний срок начала работы, исходящей из -го события и входящей в -е событие, ;

  1. – ранний срок окончания данной работы, ;

  2. – длительность этой работы, ;

  3. – раннее начало события, из которого исходит рассматриваемая работа, ;

Поздний срок окончания работы совпадает с поздним сроком наступ­ления её конечного события, а поздний срок начала работы меньше на величину продолжи­тельности этой работы:

; (2.6)

, (2.7)

  1. – поздний срок окончания работы, исходящей из -го события и входящей в -е событие, ;

  1. – поздний срок начала данной работы, ;

  2. – длительность этой работы, ;

  3. – позднее окончание события, в которое входит рассматриваемая работа, .

Полный резерв времени некоторой работы – это максимальное время, на ко­торое можно отсрочить её начало или увеличить продолжительность, не из­меняя директивного срока наступления завершающего события сетевого графика:

, (2.8)

  1. – полный резерв времени работы, исходящей из -го события и входящей в -е событие, .

Свободный резерв времени некоторой работы – максимальное время, на ко­торое можно отсрочить её начало или увеличить её продолжительность при усло­вии, что все события наступают в свои ранние сроки:

, (2.9)

  1. – свободный резерв времени работы, исходящей из -го собы­тия и входящей в -е событие, .

В качестве примера, который потребуется и в дальнейшем, основные рас­смотренные параметры сетевого графика рассчитаны для случая, представленного на рисунке Error: Reference source not found. Здесь, длительности работ, являющиеся исходными данными для расчёта, выбраны произвольным образом. Параметры работ обозначены соответ­ствующими символами возле стрелок. Параметры событий отражены в трёх квад­рантах соответствующих кружков. В левых квадрантах отражены значения ранних сроков свершения событий. В правых – значения поздних сроков свершения собы­тий. В верхних – значения резервов времени событий.

Как говорилось в предыдущем разделе, длительность критического пути легко найти из расчёта параметров сетевого графика. Теперь можно сказать, чему она равна, – она равна сроку свершения завершающего события сетевого графика и, соответственно, определяет длительность выполнения всех проектных работ. По­следнее заключается в том, что проектные работы не могут завершиться в срок, меньший, чем длительность критического пути, и в тоже время, если все проект­ные работы выполняются вовремя, то срок их завершения равен длительности критического пути.

3Обоснование рациональных методик поиска особых путей сетевых графиков

Обоснование рациональных методик поиска особых путей сетевого графика основано на смысле полного резерва времени работы, который показывает, на сколько можно отсрочить начало или увеличить продолжительность работы без изменения продолжительности всего проекта. Надо сказать, что этот смысл выте­кает из правил расчёта сетевого графика и давно известен, поэтому сейчас он не требуется в специальном рассмотрении. Важно другое – из смысла полного ре­зерва времени работы следует истинность следующего утверждения, на котором основаны некоторые, приводимые ниже доказательства, – полный резерв времени работы может появиться только за счёт существования другого более длительного пути, нежели путь, в состав которого входит рассматриваемая работа. Это утвер­ждение становится очевидным, если подумать – за счёт чего, у некоторой работы, может появиться возможность отсрочить начало её выполнения или увеличить её продолжительность без изменения срока свершения завершающего события сете­вого графика? Естественно, только за счёт того, что этот срок свершения опреде­ляется другим, более продолжительным путём.

Начнём с доказательства методики поиска критического пути сетевого гра­фика. Для этого рассмотрим ряд вспомогательных теорем.

Теорема 3.1 – Для того, чтобы некоторый путь сетевого графика был бы кри­тическим, необходимо и достаточно, чтобы полные резервы времени всех вхо­дя­щих в него работ были бы равны нулю.

Необходимость – Если некоторый путь является критическим, то полные резервы времени всех входящих в него работ равны нулю.

Докажем это утверждение методом от противного.

Пусть известно, что некоторый рассматриваемый путь заведомо критиче­ский. Теперь предположим противное – на нём лежит хотя бы одна работа с нену­левым резервом времени. Это означает, что есть другой путь, с большей продол­жительностью, чем рассматриваемый, за счёт чего и получается данный резерв времени. Но, раз имеется более продолжительный путь, то рассматриваемый путь уже не может быть критическим. Полученное противоречие доказывает невоз­можность существования на критическом пути работы с ненулевым полным ре­зервом времени, так как в противном случае, он уже не будет являться критиче­ским. Тогда, для любой работы критического пути остаётся другая возможная си­туация – её полный резерв времени равен нулю. Утверждение доказано.

Поскольку любой сетевой график имеет критический путь, то есть путь с наибольшей продолжительностью, то, на основании только что доказанного, в лю­бом сетевом графике можно найти путь, работы которого имеют только нулевые полные резервы времени.

Достаточность – Если все работы некоторого пути имеют нулевые полные резервы времени, то этот путь обязательно является критическим.

Если некоторый путь имеет работы только с нулевыми полными резервами времени, то это означает, что ни одну работу, указанного пути, нельзя увеличить по длительности без изменения срока свершения завершающего события сетевого графика. Это возможно, только когда сумма длительностей работ, рассматривае­мого пути равна сроку свершения завершающего события, то есть длительности критического пути. Тогда, рассматриваемый путь и является критическим, в силу того, что он равен критическому пути по длительности. Утверждение доказано.

Теорема 3.2 – Если в некоторое событие сетевого графика входит работа с ну­левым полным резервом времени, то среди всех исходящих из данного события работ, обязательно найдётся хотя бы одна, имеющая также нулевой резерв вре­мени. То есть, работы с нулевыми резервами времени следуют друг за другом не­прерывно.

Для доказательства данной теоремы рассмотрим обобщенный пример на ри­сунке Error: Reference source not found, где, в целях удобства, событиям присвоены условные номера.

Докажем теорему методом от противного.

П
усть для работы, входящеё в событие 2, полный резерв времени . Предположим противное – среди всех работ, исходящих из события 2, нет ни од­ной работы с нулевым полным резервом времени.

Для начала найдём, чему равен поздний срок свершения события 2. Он, в соответствии с формулой (2.2), определяется как минимальное время позднего на­чала работы среди всех работ, исходящих из рассматриваемого события. Пусть поздний срок свершения события 2 равен позднему началу работы, входящей, на­пример, в событие 4:

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6525
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее