CRAMNIY (739720), страница 5
Текст из файла (страница 5)
К SiI4 близок по свойствам роданид кремния — Si(NCS)4, который может быть получен взаимодействием SiCl4 и Pb(NCS)2 в бензольном растворе. Вещество это представляет собой бесцветные кристаллы (т. пл. 146, т. кип. 313 °С), под действием воды легко разлагающиеся. Интересно, что в молекуле Si(NCS)4 группировка Si-N=C имеет, по-видимому, линейную структуру, тогда как для молекулы Si(NCO)4 даётся ÐSiNC = 146° при длинах связей d(SiN) = 169, d(NC) = 121, d(CO) = 116 пм.
Бромистый и йодистый кремний удобнее получать взаимодействием газообразных HВr или HI c парами SiCl4 при нагревании. Если обмен хлора на бром или иод провести не нацело, образуются смешанные галогениды кремния — SiCl3Br, SiCl2Br2, SiClBr3, SiCl3I и др. Взаимодействием SiCl4 и SbF3 при нагревании можно получить аналогичные фторохлориды — SiFCl3, SiF2Cl2, SiF3Cl. При высоких температурах устанавливается некоторое равновесное соотношение между молекулами разного типа. Например, при нагревании SiF2Br2 до 700 °С в смеси одновременно содержатся: SiBr4 (4%), SiFBr3 (25), SiF2Br2 (40), SiF3Br (23), SiF4 (8%). Свойства смешанных производных являются обычно промежуточными по отношению к свойствам соответствующих простых галогенидов.
Кроме простейших галогенидов SiF4, для кремния известны галогенидные производные Si2F6. Общим способом их образования является взаимодействие при высокой температуре паров SiF4 и аморфного Si по обратимой реакции
3 SiF4 + Si Û 2 Si2F6.
Галогениды Si2F6 представляют собой бесцветные жидкие или твёрдые вещества. Наиболее изученным их представителем является Si2Cl6 (т.пл. 3, т. кип. 147 °С): d(SiSi) = 234 пм, d(SiCl) = 202 пм, ÐСlSiCl = 110°. Известен аналогичный бромид. Для хлора и брома известны соединения с более длинными цепями атомов кремния вплоть до Si6Cl14 (т.пл. 318 °С) и Si5Br12. Были описаны также продукты состава Si10Cl22 (вязкая жидкость), Si25Cl52 (пластическая масса) и Si10Cl18. Последний имеет бициклическое строение типа Si4Cl82SiClSi4Cl8 и представляет собой жёлтую вазелиноподобную массу.
Все сложные галогениды кремния легко разлагаются водой с образованием в конечном счёте Si(OH)4 и соответствующей галогенводородной кислоты. При проведении реакции на холоду и без избытка воды могут быть выделены неустойчивые промежуточные продукты гидролиза, ещё сохраняющие связи Si-Si в своём составе. Так, Si2Cl6 даёт в этих условиях силикощавелевую кислоту (SiOOH)2, которая выделяется в виде белого порошка, нерастворимого в воде и не обладающего кислыми свойствами. При трении или нагревании она легко разлагается со взрывом, а в щелочах растворяется с выделением водорода. Взаимодействием Si2Cl6 c жидким аммиаком было получено имидное производное состава Si2(NH)3, термическое разложение которого при умеренном нагревании (ниже 500 °С) ведёт к образованию белого рентгеноаморфного нитрида состава SiN.
При нагревании выше 1000 °С порошкообразного кремния в парах SiГ4 протекает обратимая реакция
SiГ4 + Si Û 2 SiГ2
сопровождающаяся отложением кремния на более холодных частях аппаратуры, т.е. имеющая транспортный характер. Реакция может использоваться для получения чистого кремния.
Для газообразных молекул SiГ2 даются следующие теплоты образования из элементов (кДж/моль): 619 (F), 42 (Br), -79 (I). Кремнийфторид был получен взаимодействием SiF4 с кремнием при 1150 °С и низком давлении (0,1-0,2 мм. рт. ст.). Продолжительности жизни индивидуальных молекул SiF2 [ d(SiF) = 159 пм, ÐFSiF = 101°] гораздо выше, чем у молекул галогенкарбенов. При их полимеризации образуется белая или желтоватая каучукоподобная масса (SiF2)n, нерастворимая в органических растворителях и разлагаемая водой. Из продуктов её термического разложения при 300 °С, помимо Si2F6 были выделены Si3F8 (т. пл. -1, т. кип. 42 °С), Si4F10 (т. пл. 67, т. кип. 85 °С) и другие члены вплоть до Si14F30. На воздухе они самовоспламеняются.
Жёлто-коричневый (SiBr)n может быть получен восстановлением растворённого в эфире SiBr4 магнием, а аналогичный по составу (SiCl)n — взаимодействием силицида магния с ICl. Оба моногалогенида кремния нерастворимы в бензоле, а водой разлагаются. Структура их отвечает “паркету” из шестичленных колец. Были описаны также (SiF)n и (SiI)n.
Выше 380 °С (SiCl)n начинает отщеплять летучие хлориды кремния, постепенно приобретая красную окраску, а выше 550 °С превращается в почти не содержащую хлора тёмно-зелёную массу, обладающую металлическим блеском и рентгеноаморфную. Кристаллизация её наступает лишь при выдерживании выше 800 °С.
Известны и некоторые производные, отвечающие кислотной функции Si(OH)4. Лучше других изучен кремнийтетрацетат — Si(CH3COO)4, представляющий собой бесцветное кристаллическое вещество (т. пл. 110 °С), разлагающееся при нагревании выше 160 °С, растворимое в ацетоне и бензоле, но тотчас подвергающееся гидролизу под действием воды.
Белый кристаллический кремнийтетразид — Si(N3)4 — весьма взрывчат. Нитрат и перхлорат кремния в индивидуальном состоянии не получены, но были выделены в виде взрывчатых двойных соединений состава Si(NO3)4·2C5H5N и Si(ClO4)4·2CH3CN.
Из фосфатов кремния наиболее изучено производное состава SiO2·P2O5, известное в двух формах — низкотемпературной (ниже 1000 °С) и высокотемпературной (т. пл. 1290 °С). Последняя не разлагается не только водой, но и плавиковой кислотой. С химической точки зрения вещество такого состава может быть или метафосфатом силицила — SiO(PO3)2, или пирофосфатом кремния — SiP2O7. Возможно, что одна из этих формул отвечает высокотемпературной форме, а другая — низкотемпературной. Был получен также нормальный ортофосфат кремния – Si3(PO4)4. Он обладает значительной твёрдостью и не разлагается кислотами (в том числе и плавиковой).
При взаимодействии SiF4 с плавиковой кислотой образуется комплексная фторокремневая (иначе кремнефтористоводородная) кислота:
2 HF + SiF4 = H2[SiF6].
Безводная Н2SiF6 не существует. Напротив, в водном растворе она устойчива и является сильной двухосновной кислотой.
Для реакции образования Н2SiF6 в разбавленных водных растворах К= =[SiF4][F’]2/[SiF6”] = 7·10-7. Её 13,3%-ный раствор перегоняется без разложения, а охлаждением крепких водных растворов она может быть выделена в виде малоустойчивых кристаллогидратов. Кислотные свойства Н2SiF6 выражены сильнее, чем у серной кислоты, — её степень диссоциации в 0,1 н. растворе составляет около 75%. Аналогичные H2SiF6 комплексные кислоты других галогенов не образуются. Особое положение фтора связано, по-видимому, со значительно меньшим объёмом F- по сравнению с Cl-, Br- и I-. Ядерное расстояние Si-F в ионе SiF62- равно 169 пм, а эффективный радиус этого иона оценивается в 240 пм.
Большинство солей этой кислоты (кремнефтористых или фторосиликатов) бесцветно и хорошо растворимо в воде. Из производных обычных металлов наиболее труднорастворимы соли калия и особенно бария.
При накаливании фторосиликаты разлагаются на SiF4 и соответствующий фтористый металл. Так, термическая диссоциация по схеме:
Na2SiF6 Û 2 NaF + SiF4
становится заметной примерно с 450 °С. Интересно, что термический распад K2SiF6 идёт, по-видимому, с промежуточным образованием K3SiF7. Фторосиликаты Ca, Sr и Ba разлагаются на SiF4 и MF2 соответственно при 370, 420 и 560 °С.
Аналогично термическому протекает распад фторосиликатов и при растворении их в жидком HF. Реакция идёт по схеме:
Na2SiF6 + 2 HF = 2 NaHF2 + SiF4.
Аммиаком фторосиликаты разрушаются с выделением свободной кремневой кислоты по схеме:
Na2SiF6 + 4 NH4OH = 2 NaF + 4 NH4F + Si(OH)4.
Подобным же образом идёт процесс и под действием сильных щелочей (NaOH или КОН), но в этом случае при избытке щёлочи образуется силикат соответствующего металла, и поэтому осадок кремневой кислоты не выпадает.
Вследствие образования H2SiF6 приводившаяся ранее общая схема гидролиза галогенидов кремния для SiF4 является несколько более сложной и выражается уравнением:
3SiF4 + 2 H2O = SiO2 + 2 H2SiF6.
Таким путём обычно и получают кремнефтористоводородную кислоту. Образование H2SiF6 всегда имеет место также при взаимодействии раствора HF с SiO2 или стеклом.
Свободная H2SiF6 используется для фторирования воды и в пивоварении (как дезинфицирующее средство), а малорастворимые фторосиликаты Na (0,7 вес. %) и Ва (0,01 %) — для борьбы с вредителями сельского хозяйства. Малой растворимостью K2SiF6 (0,2%) иногда пользуются для получения свободных кислот (например, HClO3) исходя из их калийных солей. Легкорастворимые фторосиликаты Mg, Zn и Al под техническим названием “флюаты” находят применение в строительном деле (для придания водонепроницаемости цементированным поверхности).
Водородные соединения кремния (кремневодороды или силаны) получаются в смеси друг с другом и с водородом при действии разбавленной НСl на силицид магния (Mg2Si). По своему составу и структурным формулам кремневодороды (SiH4, Si2H6 и т. д. вплоть до последнего известного члена — Si8H18) аналогичны углеводородам ряда метана. Большое сходство наблюдается и в отношении физических свойств: подобно углеводородам, силаны бесцветны, первые члены гомологического ряда при обычных условиях газообразны, следующие представляют собой жидкости. Напротив, общая химическая характеристика обоих классов соединений различна: в противоположность инертным углеводородам силаны весьма реакционноспособны. В частности, на воздухе они легко воспламеняются и сгорают до SiO2 и воды, причём горение сопровождается очень большим выделением тепла (1425 кДж/моль SiH4).
Устойчивость силанов уменьшается по мере увеличения числа атомов кремния в молекуле. В том же направлении уменьшаются и их относительные количества, получающиеся при взаимодействии Mg2Si с кислотой или раствором NH4Br в жидком аммиаке (последний способ даёт значительно лучший выход силанов). Путём сильного охлаждения газовой смеси и её фракционной перегонки в отсутствие воздуха были выделены отдельные кремневодороды вплоть до Si8H18. Некоторые константы первых членов ряда приводятся ниже:
SiH4 Si2H6 Si3H8 Si4H10
Температура плавления, °С. . . . . . . –185 –132 –117 –86
Температура кипения, °С. . . . . . . . . –112 –14 +53 107
Тетрасилан был получен в двух изомерных формах (аналогичных нормальному бутану и изобутану).
Все силаны обладают характерным запахом и сильно ядовиты. При нагревании высшие члены ряда распадаются с образованием (SiH)x, SiH4 и H2. Окислителями силаны переводятся в H2O и SiO2. Со свободными галогенами они реагируют аналогично углеводородам, последовательно обменивания на галоген один атом водорода за другим. С галогеноводородами (например, HCl) в присутствии катализатора (AlCl3) идёт при нагревании подобная же (но не имеющая аналогии в химии углерода) реакция обмена водорода на галоген по схеме:
SiH4 + HCl = H2 + SiH3Cl.
C концентрированной H2SO4 силаны (подобно углеводородам) не реагируют. Они хорошо растворимы в органических растворителях, но почти нерастворимы в воде. Последняя разлагает их по схеме:
SiH4 + 2 H2O = 4 H2 + SiO2.
Однако с тщательно очищенной водой в кварцевых сосудах реакция идёт настолько медленно, что остаётся практически незаметной. В присутствии следов кислот, и особенно щелочей, она значительно ускоряется, и при обычных условиях вода разлагает за сутки уже около 20% исходного количества SiH4.
Cилан является эндотермичным соединением (теплота его образования из элементов равна –33 кДж/моль). До 450 °С он термически устойчив, а при дальнейшем нагревании начинает постепенно разлагаться на элементы. Молекула SiH4 представляет собой правильный тетраэдр с атомом кремния в центре [d(SiH4) = 148 пм].
В молекуле дисилана d(SiH) = 149, d(SiSi) = 233 пм. Термический распад Si2H6 начинается уже выше 300 °С. Интересно, что дисилан реагирует с CСl4, тогда как силан с ним не взаимодействует. Это указывает, по-видимому, на неполную экранированность кремния в дисилане.