referat1 (731949)

Файл №731949 referat1 (Метод моментов в определении ширины линии магнитного резонанса)referat1 (731949)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Оглавление

А.Введение…………………………………………………………………………..2

§1.Локальное поле…………………………………………………………………2

§2.Общая теория магнитного поглощения………………………………………2

Б. Уширение, вызванное взаимодействием между одинаковыми спинами…….5

§3.Диполь-дипольное взаимодействие…………………………………………...5

§4.Определение моментов…………………………………………………………6

§5.Метод вычисления моментов………………………………………………….7

В. Кинетические свойства….………………………………………………………10

§6.Кинетическое уравнение………………………………………………………10

§7.Электропроводность…………………………………………………………...11

А. ВВЕДЕНИЕ

Линия магнитного резонансного поглощения системы спинов, находящихся в неоднородном магнитном поле, обладает некоторой шириной, обусловленной разбросом ларморовских частот. Аналогичное уширение может иметь место в неидеальных кристаллах благодаря взаимодействию ядерных квадрупольных моментов с малыми градиентами электрического поля, значения которых изменяются от одного узла решетки к другому случайным образом. В обоих случаях ширина линии обусловливается различием резонансных частот отдельных спинов, а не взаимодействиями между ними. Соответствующее уширение линии называется неоднородным уширением.

Положение существенно изменяется, если уширение линии обусловлено взаимодействием между соседними спинами. Эта задача и рассмат­ривается в настоящей работе.

§ 1. ЛОКАЛЬНОЕ ПОЛЕ

Энергия взаимодействия между двумя ядерными спинами зависит от величины и ориентации их магнитных моментов, а также от длины и направления вектора, описывающего их относительное расположение. Влияние такого взаимодействия на ширину линии поглощения сущест­венным образом зависит от того, зафиксирован ли этот вектор в простран­стве или его положение быстро меняется со временем вследствие относи­тельного движения ядер.

Последний случай, как правило, встречающийся в жидкостях и га­зах, будет рассмотрен позднее. В этой главе мы ограничимся случаем жест­кой решетки, в которой ядра можно считать неподвижными. Такое при­ближение разумно для многих твердых тел при комнатной температуре, в частности для ионных кристаллов.

Энергия диполь-дипольного взаимодействия двух магнитных моментов 1=1ћI1 и 2=2ћI2 описывается хорошо известным выражением

(1)

которое можно переписать в виде

W12 = – 2 ∙H12 = – 2ћI2∙H12 ,

где H12 локальное поле, созданное первым спином в месте расположе­ния второго спина. (Введение в рассмотрение понятия локального поля очень удобно.) Поскольку ядерные магнитные моменты имеют порядок 10-3 магнетона Бора, или 10-23 CGS, а между ядерные расстояния порядка нескольких ангстрем, то локальные поля в жесткой решетке в общем случае имеют порядок нескольких эрстед.

Взаимодействие двух одинаковых диполей в сильном поле Н0 может быть описано с классической точки зрения следующим образом. Первый диполь 1 прецессирует с ларморовской частотой вокруг поля Н0 и, следова­тельно, обладает постоянной составляющей вдоль этого поля и составляю­щей, которая вращается в плоскости, перпендикулярной полю. Постоян­ная составляющая 1 создает в месте расположения диполя 2 слабое постоянное поле, ориентация которого относительно Н0 зависит от взаим­ного расположения спинов. Если поле Н0 сильное, то на него заметно влияет только параллельная или антипараллельная ему составляющая слабого поля. Так как каждый спин в решетке имеет несколько соседей с различными относительными положениями и ориентациями, постоянная составляющая локального поля имеет разные значения в различных местах, что приводит к разбросу ларморовских частот и уширению линии.

Вращающаяся составляющая 1 создает в месте расположения 2 локальное магнитное поле, вращающееся с ларморовской частотой 1, которая совпадает с ларморовской частотой для 2. В свою очередь она имеет составляющую в плоскости, перпендикулярной Н0 и, следовательно, может заметно изменять ориентацию 2 благодаря явлению резонанса. Соответствующая ширина линии должна быть порядка величины вращающегося поля. В рассматри­ваемом случае оно того же порядка величины, что и локальное постоянное поле и, следовательно, вносит в уширение вклад сравнимой величины.

Необходимо отчетливо понимать, что механизмы, обусловливающие эти вклады в ширину линии, в действительности различны. Если два спина не являются одинаковыми, то вращающееся поле, созданное 1, не является резонансным для 2 и оказывает на него пренебрежимо малое влияние, в то время как постоянное поле, созданное 1, в месте располо­жения 2 является столь же эффективным, как и в случае одинаковых спи­нов. При прочих равных условиях одинаковые соседние спины оказывают более сильное влияние на уширение резонансной линии, чем неодина­ковые.

§ 2. ОБЩАЯ ТЕОРИЯ МАГНИТНОГО ПОГЛОЩЕНИЯ

Для количественного описания формы линии, обусловленной дипольным уширением, необходимо развить формализм.

Когда все спины образца связаны друг с другом дипольным взаимо­действием, представление об отдельных независимых спинах, находящихся в стационарных состояниях, становится неверным. Этот вывод следует хотя бы из того факта, что вращающееся локальное поле, созданное одним спином, приводит к переориентации его соседей. Поэтому образец при­ходится рассматривать как единую большую систему спинов, а переходы, вызванные радиочастотным полем, — как переходы между различными энергетическими уровнями этой системы. Соответственно изменяется и ста­тистическое описание с использованием матрицы плотности. Вместо ста­тистического ансамбля спинов, описываемых (2I +1)  (2I +1) матри­цей плотности, весь образец, содержащий N спинов, теперь становится одним элементом статистического ансамбля и описывается (2I +1)N  (2I +1)N матрицей плотности. Такое видоизменение никоим образом не ограничивается ядерным магнетизмом, напротив, оно весьма часто встре­чается в статистической физике» а именно всякий раз, когда переходят от описания систем со слабыми взаимодействиями, например, таких, как молекулы газа при низком давлении, к описанию сильно взаимодействую­щих систем, таких, как атомы Кристалла. Первый подход соответствует методу Максвелла – Больцмана, а второй — методу Гиббса.

Стационарное состояние, следуя методу Гиббса, можно описать сле­дующим образом. Если к системе спинов приложено линейно поляризован­ное вдоль оси Ох радиочастотное поле Н1 cos t, то при стационарных условиях система приобретает намагниченность, составляющая которой вдоль этой же оси равна

Мх = H1 {' () cos t +'' () sin t}. (la)

Условие линейности или отсутствия насыщения предполагает, что ' и '' не зависят от H0. ' и '' можно измерить отдельно, а '' пропорционально скорости поглощения радиочастотной энергии образцом.

Выведем общую формулу для '' (). Выше было показано, что в линей­ной теории резонанса между ' () и '' () существуют независимо от при­роды рассматриваемой системы общие соотношения (соотношения Крамерса – Кронига), позволяющие вычислить одну из этих величин, когда для всех значений частоты известна другая.

Ниже, чтобы избежать путаницы, мы будем обозначать через М макро­скопическое значение намагниченности образца и через M соответ­ствующий квантовомеханический оператор. Между ними имеет место соотношение

М = <M> = Sp {M}, (2)

где  – статистический оператор, или матрица плотности, описывающая систему спинов. Пусть ħH полный гамильтониан системы в отсутствие внешнего радиочастотного поля. Если до приложения радиочастотного поля система находится в тепловом равновесии при температуре Т, то ее статистический оператор определяется выражением

(3)

которое просто означает, что статистическое поведение системы можно описать, если ее энергетическим уровням ħEn приписать населенности, пропорциональные exp(—ħEn/kT).

При наличии радиочастотного поля уравнение движения для  имеет вид

(4)

где V – объем образца. Чтобы решить (4) относительно , сделаем подстановку

* = ei H t e – i H t , (5)

которая преобразует (4) в уравнение

. (6)

Предположим, что радиочастотное поле было включено в момент, когда образец находился в тепловом равновесии и

 (–) =  = * (–).

В момент t решение (6) в линейном приближении относительно Н1 имеет вид

( 7)

Поэтому, возвращаясь к  [см. (5)], находим

(8)

Если предположить, что до включения радиочастотного доля намагни­ченность вдоль оси x была равна нулю, т. е.

Мх (–) = Sp {0Mx} =0,

то

(9)

и, согласно определению (1 а),

(10)

Учтем, что температура обычно достаточно высока для того, чтобы для рав­новесной матрицы плотности (3) можно было использовать линейное разложение

где – единичный оператор; тогда восприимчивость () становится равной

(11)

откуда, интегрируя по частям, получаем

(12)

Выражение (12) можно преобразовать к более компактной форме двумя способами.

В первом способе, вводя в рассмотрение оператор Гейзенберга

Mx (t) = e iH t Mx e iH t, (12a)

можно переписать (12) в виде

(13)

где

G(t) = Sp{Mx(t) Mx }, (13a)

Характеристики

Тип файла
Документ
Размер
453,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6366
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее