referat1 (731949), страница 3

Файл №731949 referat1 (Метод моментов в определении ширины линии магнитного резонанса) 3 страницаreferat1 (731949) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Ширина на половине высоты значительно меньше, чем среднеквадратичная ширина. С другой стороны, предположение о гауссовой форме линии может быть разумным всякий раз, когда отношение M4 /( M2)2 порядка 3.

§ 5. МЕТОД ВЫЧИСЛЕНИЯ МОМЕНТОВ

Основной недостаток метода моментов состоит в том, что важный вклад в значение момента (вклад тем существеннее, чем выше момент) дают крылья кривой, которые на практике не наблюдаются. Необходимо из вычисленных моментов линии магнитного резонанса с центром на ларморовской частоте  =0 исключить вклады от сопутствующих линий на частотах  = 0, 20, 30 о которых упоминалось ранее. Легко видеть, что, несмотря на их малую интенсивность (благодаря удаленности от центральной частоты 0) вклад во второй момент сравним с вкладом от главной линии и тем больше, чем выше порядок момента. Для исключения вкладов от них следует рассматри­вать в гамильтониане возмущения ħH1 ответственного за уширение, только его секулярную часть ħH0, которая коммутирует с H0 и, следова­тельно, не может отвечать перемешиванию состояний с различными пол­ными М; такое смешивание является причиной появления побочных линий. Таким образом, сокращение дипольного гамильтониана до его секулярной части

не только упрощает вычисление моментов, но и делает его более точным.

Прежде чем начать расчет, отметим, что линия магнитного резонанса симметрична относительно центральной частоты 0. Убедимся в правиль­ности этого утверждения. Если | а > и | b > — два собственных состояния ħ(H0+H1) с разностью энергии ħ(Еа — Еb) = ħ0 + ab, то два состоя­ния | а~ > и | b~ >, полученные из | а > и | b > соответственно путем пово­рота всех спинов в обратном направлении, будут также собственными состояниями ħ(H0+H1) с ħ(Еb~ – Еa~) = ħ0 + ab. Таким образом, каждо­му переходу с частотой 0 + u соответствует переход равной интенсивности с частотой 0 – u. Если f) — функция формы, то h (u) = f0 + u)— четная функция u. Поскольку моменты кривой пропорциональны про­изводным в начале координат от их фурье-преобразования, мы будем применять для их вычисления формулу (13). Вследствие узости линии ядерного магнитного резонанса можно пренебречь изменением величины  в пределах ширины линии и предположить, что форма линии описывается /, так же как и . Тогда, поскольку f — нормированная функция формы, (13) может быть переписано в виде

f = A∫ G(t) cos t dt, (IV.26)

где постоянная A определяется из условия нормировки f, а опреде­ленная ранее четная функция G (t) равна Sp{Mx(t)Mx}. Обратно

G(t) = 2/(A)∫ f cos t d, (IV.27)

Согласно вышеизложенному, в выражении

Mx(t) = еiHtMxеiHt.

следует вместо H = H0+H1 подставить H = H0+H1 что значи­тельно упрощает вычисления. Поскольку H0 и H1 коммутируют, можно записать

exp{i(H0+H1)t} = exp(iH0t) exp(iH1t).

Учитывая, что зеемановский гамильтониан ħH0 равен ħ0Iz функцию G (t) можно переписать в виде

(IV.28)

Шпур произведения операторов инвариантен относительно циклической перестановки, поэтому

(IV.28a)

В этом выражении оператор exp(i0Izt) определяет поворот на угол 0t вокруг оси z, и, следовательно, можно записать

(29)

Легко видеть, что второй член в (29) равен нулю, так как поворот спинов на 180°, например вокруг оси ох, не изменяет H1 и Mx но преоб­разует Mу в – My.

Заменяя в (27) G (t) на G1(t)cos0t, где

G1(t)=Sp{еxp(iH1t)Mxе(–iH1t)Mx}

называется сокращенной функцией автокорреляции, и вводя обозначение

h (u) = f0 + u),

получаем

Заменяя нижний предел на – , что допустимо для узких линий, найдем

Поскольку h (и) является четной функцией, второй интеграл равен нулю и

G1(t)=Sp{еxp(iH1t)Mxе(–iH1t)Mx}

(30)

Различные моменты кривой распределения h (и) относительно резонансной частоты  =0 определяются выражением

Нечетные моменты равны нулю, а четные определяются формулой

(31)

Таким образом, для вычисления моментов резонансной кривой достаточно разложить G1 (t) в выражении (30) по степеням t. При этом коэффициенты разложения представляют собой шпуры от операторов, которые являются полиномами от H1 и Mx .

Сущность метода заключается в том, что значения упомянутых шпуров не зависят от выбора основных состояний и могут быть вычислены, напри­мер, в представлении, где значения mj = Ijz отдельных спинов (поэтому представление называется mj-представлением) являются хорошими кван­товыми числами. Таким образом, нет необходимости решать проблему отыскания собственных состояний | n > полного гамильтониана. Из опре­деления (30) функции G1(t) вытекает, что значение ее р-й произ­водной в момент t = 0 определяется выражением

(IV.32)

Формула (32) просто находится из дифференциального уравнения

(33)

которому удовлетворяет зависящий от времени оператор

Mx(t) = е(iH1t)Mxе(–iH1t)t.

Решение этого уравнения может быть представлено в виде ряда

Mx(t) = Mx + M (1)x(t) + M (2)x(t) + …+ M (n)x(t),

отдельные члены, которого получаются методом индукции с помощью соот­ношения

из последнего сразу же следует (32). Из (31) и (32) для первых двух четных моментов находим

(34)

(34a)

B (34) Mx заменено полным спином Ix, пропорциональным Mx . По­скольку мы определили гамильтониан в виде ħH, следует помнить, что эти моменты соответствуют ширинам линии, измеренным в единицах   .

8


Характеристики

Тип файла
Документ
Размер
453,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6358
Авторов
на СтудИзбе
311
Средний доход
с одного платного файла
Обучение Подробнее