3_f (731775)

Файл №731775 3_f (Движение в центрально-симметричном поле)3_f (731775)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Национальный Технический Университет Украины

«Киевский Политехнический Институт»

Реферат

По курсу: Квантовая Механика

На тему:

« Движение в центрально – симметричном поле »

Выполнил студент

группы ДС-71

Садрицкий Роман.

Киев-1999г.

Содержание:

  1. Движение в центрально-симметричном поле.

  2. Падение частицы на центр.

  3. Движение в кулоновом поле ( сферические координаты ).

1.Движение в центрально-симметричном поле.

Задача о движении двух взаимодействующих друг с другом частиц в квантовой механике может быть сведена к задаче об одной частице, - аналогично тому, как это может быть сделано в классической механике. Гамильтониан двух частиц ( с массами ) , взаимодействующих по закону -расстояние между частицами), имеет вид

(1,1)

где - операторы Лапласа по координатам частиц. Введем вместо радиусов-векторов частиц и новые переменные и :

(1,2)

- вектор взаимного расстояния, а - радиус-вектор центра инерции частиц. Простое вычисление приводит к результату:

(1,3)

( и - операторы Лапласа соответственно по компонентам векторов и ;

- полная масса системы; - приведенная масса). Таким образом, гамильтониан распадается на сумму двух независимых частей. Соответственно этому, можно искать в виде произведения , где функция описывает движение центра инерции ( как свободное движение частицы с массой ), а описывает относительное движение частиц ( как движение частицы массы в центрально-симметричном поле ).

Уравнение Шредингера для движения частицы в центрально-симметричном поле имеет вид

(1,4)

Воспользовавшись известным выражением для оператора Лапласа в сферических координатах, напишем это уравнение в виде

.

(1,5)

Если ввести сюда оператор квадрата момента:

,

то мы получим

(1,6)

При движении в центрально-симметричном поле момент импульса сохраняется. Будем рассматривать стационарные состояния с определенными значениями момента и его проекции . Заданием значений и определяется угловая зависимость волновых функций. Соответственно этому, ищем решения уравнения (1,6) в виде

(1,7)

где - сферические функции. Поскольку , то для «радиальной функции» получаем уравнение

(1,8)

Это уравнение не содержит вовсе значения , что соответствует -кратному вырождению уровней по направлениям момента.

Займемся исследованием радиальной части волновых функций. Подстановкой

(1,9)

уравнение (1,8) приводится к виду

(1,10)

Если потенциальная энергия везде конечна, то должна быть конечной во всем пространстве, включая начало координат, также и волновая функция , а следовательно, и ее радиальная часть . Отсюда следует, что должна обращаться в нуль при :

(1,11)

В действительности это условие сохраняется также и для поля, обращающегося при в бесконечность.

Уравнение (1,10) по форме совпадает с уравнением Шредингера для одномерного движения в поле с потенциальной энергией

(1,12)

равной сумме энергии , и члена

,

который можно назвать центробежной энергией. Таким образом, задача о движении в центрально-симметричном поле сводится к задаче об одномерном движении в области, ограниченной с одной стороны ( граничное условие при ). «Одномерный характер» имеет также и условие нормировки для функции , определяющееся интегралом

.

При одномерном движении в ограниченной с одной стороны области уровни энергии не вырождены. Поэтому можно сказать, что заданием значения энергии решение уравнения (1,10), т.е. радиальная часть волновой функции, определяется полностью. Имея также в виду, что угловая часть волновой функции полностью определяется значениями и , мы приходим к выводу, что при движении в центрально-симметричном поле волновая функция полностью определяется значениями . Другими словами, энергия, квадрат момента и его проекция составляют полный набор физических величин для такого движения.

Сведение задачи о движении в центрально-симметричном поле к одномерному позволяет применить осцилляционную теорему. Расположим собственные значения энергии ( дискретного спектра ) при заданном в порядке возрастания, перенумеровав их порядковыми номерами , причем наиболее низкому уровню приписывается номер . Тогда определяет число узлов радиальной части волновой функции при конечных значениях (не считая точки ). Число называют радиальным квантовым числом. Число при движении в центрально-симметричном поле иногда называют азимутальным квантовым числом, а - магнитным квантовым числом.

Для обозначения состояний с различными значениями момента частицы существует общепринятая символика; состояния обозначаются буквами латинского алфавита со следующим соответствием:

1 2 3 4 5 6 7 . . .

(1,13)

Нормальным состоянием при движении частицы в центрально-симметричном поле всегда является - состояние; действительно, при угловая часть волновой функции во всяком случае имеет узлы, между тем как волновая функция нормального состояния не должна иметь узлов вовсе. Можно также утверждать, что наименьшее возможное при заданном собственное значение энергии растет с увеличением . Это следует уже из того, что наличие момента связано с добавлением в гамильтониане существенно положительного члена , растущего с увеличением .

Определим вид радиальной функции вблизи начала координат. При этом будет считать, что

(1,14)

Ищем в виде степенного ряда по , оставляя при малых только первый член разложения; другими словами, ищем в виде . Подставляя это в уравнение

,

получающееся из (1,8) умножением последнего на и переходя к , найдем

.

Отсюда

или .

Решение не удовлетворяет необходимым условиям; оно обращается в бесконечность при ( напомним, что ). Таким образом, остается решение с , т.е. вблизи начала координат волновые функции состояний с данным пропорциональны :

. (1,15)

Вероятность частице находиться на расстоянии от центра между и определяется величиной и поэтому пропорциональна . Мы видим, что она тем быстрее обращается в нуль в начале координат, чем больше значение .

2. Падение частицы на центр.

Для выяснения некоторых особенностей квантовомеханического движения полезно изучить случай, не имеющий, правда, непосредственного физического смысла, - движение частицы в поле с потенциальной энергией, обращающейся в некоторой точке ( начале координат ) в бесконечность по закону ; вид поля вдали от начала координат нас не будет интересовать. Этот случай – промежуточный между теми, когда имеются обычные стационарные состояния, и случаями, когда происходит «падение» частицы на начало координат.

Вблизи начала координат уравнение Шредингера в рассматриваемом случае будет следующим:

(2,1)

( - радиальная часть волновой функции), где введена постоянная

(2,2)

и опущены все члены более низкого порядка по ; значение энергии предполагается конечным, и потому соответствующий член в уравнении тоже опущен.

Ищем в виде ; тогда получаем для квадратное уравнение

с двумя корнями

, (2,3)

Для дальнейшего исследования удобно поступить следующим образом. Выделим вокруг начала координат малую область радиуса и заменим функцию в этой области постоянной величиной . Определив волновые функции в таком «обрезанном» поле, мы затем посмотрим, что получается при переходе к пределу .

Предположим сначала, что . Тогда и - вещественные отрицательные числа, причем > . При общее решение уравнения Шредингера имеет вид ( везде речь идет о малых )

(2,4)

( - постоянные). При решение уравнения

конечное в начале координат, имеет вид

(2,5)

При функция и ее производная должны быть непрерывными функциями. Удобно написать одно из условий в виде условия непрерывности логарифмической производной от . Это приводит к уравнению

или

.

Решенное относительно , это уравнение дает выражение вида

(2,6)

Переходя теперь к пределу , находим, что ( напоминаем, что ). Таким образом, из двух расходящихся в начале координат решений уравнения Шредингера (2,1) должно быть выбрано то, которое обращается в бесконечность менее быстро:

Характеристики

Тип файла
Документ
Размер
731 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6537
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее