3_f (731775), страница 3

Файл №731775 3_f (Движение в центрально-симметричном поле) 3 страница3_f (731775) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

(3,23)

в согласии с общим видом нормировочных волновых функций непрерывного спектра в центрально-симметричном поле. Выражение (3,23) отличается от общего вида наличием логарифмического члена в аргументе у синуса; поскольку, однако, растет при увеличении медленно по сравнению с самим , то при вычислении нормировочного интеграла, расходящегося на бесконечности, наличие этого члена не существенно.

Модуль Г-функции, входящий в выражение (3,22) для нормировочного множителя, может быть выражен через элементарные функции. Воспользовавшись известными свойствами Г-функций

, ,

имеем

,

и далее

.

Таким образом,

(3,24)

( при произведение заменяется на 1 ).

Предельным переходом можно получить радиальную функцию для особого случая равной нулю энергии. При

,

где - функция Бесселя. Коэффициенты (3,24) при сводятся к

Отсюда находим

(3,25)

Асимптотический вид этой функции при больших

(3,26)

Множитель исчезает при переходе к нормировке «по шкале энергии», т.е. от функции к функции ; именно функция остается конечной в пределе .

В кулоновом поле отталкивания имеется только непрерывный спектр положительных собственных значений энергии. Уравнение Шредингера в этом поле может быть формально получено из уравнения для поля притяжения изменением знака у . Поэтому волновые функции стационарных состояний получаются непосредственно из (3,18) посредством этой же замены.

Нормировочный коэффициент снова определяется по асимптотическому выражению и в результате получается

,

. (3,27)

Асимптотическое выражение этой функции при больших имеет вид

,

(3,28)

.

Природа кулонова вырождения.

При классическом движении частицы в кулоновом поле имеет место специфический для этого поля закон сохранения; в случае поля притяжения

(3,29)

В квантовой механике этой величине отвечает оператор

(3,30)

коммутативный, как легко проверить, с гамильтонианом .

Прямое вычисление приводит к следующим правилам коммутации для операторов друг с другом и с оператором момента:

, . (3,31)

Некоммутативность операторов друг с другом означает, что величины не могут иметь в квантовой механике одновременно определенных значений. Каждый из этих операторов, скажем , коммутативен с такой же компонентой момента , но некоммутативен с оператором квадрата

момента . Наличие новой сохраняющейся величины, не измеримой одновременно с другими сохраняющимися величинами, , приводит к дополнительному вырождению уровней, - это и есть специфическое для кулонова поля «случайное» вырождение дискретных уровней энергии.

Происхождение этого вырождения можно сформулировать также и в терминах той повышенной симметрии ( по сравнению с симметрией по отношению к пространственным вращениям ), которой обладает кулонова задача в квантовой механике.

Для этого отмечаем, что для состояний дискретного спектра, с фиксированной отрицательной энергией, можно заменить в правой стороне соотношения (3,31) на и ввести вместо операторы . Для них правила коммутации принимают вид

, (3,32)

Вместе с правилом эти соотношения формально совпадают с правилами коммутации операторов бесконечно малых поворотов в четырехмерном евклидовом пространстве. Это и есть симметрия кулоновой задачи в квантовой механике.

Из соотношений коммутации (3,32) можно снова получить выражение для уровней энергии в кулоновом поле. Перепишем их, введя вместо и операторы

, . (3,33)

Для них имеем

, , (3,34)

Эти правила формально совпадают с правилами коммутации двух независимых векторов трехмерного импульса. Поэтому собственные значения каждого из квадратов и равны и , где . С другой стороны, по определению операторов и , находим, после простого вычисления:

,

( при вычислении суммы снова заменено на ). Отсюда

(где ) и затем .

Обозначив

, , (3,35)

приходим к требуемому результату . Кратность вырождения уровней равна, как и следовало: . Наконец, поскольку , то при заданном орбитальный момент пробегает значения от до .

1 Предполагается, что при малых поле таково, что падения частицы не происходит.

Характеристики

Тип файла
Документ
Размер
731 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6540
Авторов
на СтудИзбе
300
Средний доход
с одного платного файла
Обучение Подробнее