135865 (722703), страница 4
Текст из файла (страница 4)
Согласно (2.17) и (2.15) корреляционная функция в точке n = 0 равна энергии сигнала, т. е.
(2.18)
Для периодических дискретных сигналов корреляционная функция и энергетический спектр связаны формулами ДПФ
. (2.19)
Отсюда получаются расчётные формулы энергии периодических дискретных последовательностей
, (2.20)
что соответствует равенству Парсеваля для дискретных периодических сигналов. Корреляционная функция таких сигналов определяется по формуле круговой свёртки
.
Расчет энергии дискретного сигнала можно выполнить при необходимости, применяя равенство Парсеваля относительно Z - изображений сигнала и его инверсной копии (теорема энергий)
, (2.21)
где - Z - изображение корреляционной функции.
Умесно заметить, что применительно к случайным сигналам корреляционная функция чаще определяется формулой с весовым множителем , т.е.
,
соответственно для энергетического спектра
,
что приводит к результату, при котором среднее значение случайной величины с ростом N сходится к постоянной величине.
Свертка сигнала с инверсной копией другого сигнала называется взаимной корреляцией этих сигналов.
2.8 Расчёт энергии сигнала в дискретной цепи.
В любой точке дискретной цепи энергию сигнала можно вычислить по известному сигналу или по корреляционной функции сигнала в этой точке. Корреляционную функцию сигнала в некоторой точке цепи можно определить не только по известному сигналу, но и по известной корреляционной функции входного сигнала и импульсной реакции
, (2.22)
где - корреляционная функция сигнала на входе цепи,
- корреляционная функция импулсного отклика в данной точке,
- условный знак свёртки.
Докажем равенство (2.22).
.
В этом выражении в силу линейности цепи сигналы можно сочетать различными способами. Поэтому
,
что доказывает справедливость (2.22). Следовательно
. (2.23)
Автокорреляционная функция является чётной функцией, поэтому применяя круговую свёртку (2.22), периоды и
необходимо выровнять с таким расчетом, чтобы сохранить чётный характер этих функций.
Пример. Определить энергию сигнала на выходе цепи, если
x(nT) = {0,5; 0,5}, h(nT) = {1,0; 0,5}.
Решение.
1. Расчет во временной области.
Определяем сигнал на выходе цепи по формуле круговой свёртки
Отсюда .
2. Расчёт в частотной области.
Вначале необходимо определить отсчёты спектра сигнала по формуле прямого ДПФ
.
Отсюда, согласно равенству Парсеваля,
.
3. Расчёт по формуле (2.23).
Определяем корреляционные функции и
.
Следовательно, .
увеличивая период и
до N=5, получаем
,
.
На рис.(2.9,а) показана периодическая последовательность до увеличения периода, на рис. (2.9,б) - после увеличения периода .
Согласно (2.22)
.
Отсюда .
В заключении рассмотрим важный часный случай применения формулы (2.23).
Для случайных сигналов с нулевым средним
, (2.24)
где - дисперсия случайного сигнала x(nT).
Отсюда, учитывая (2.23),
.
Следовательно
, (2.25)
Формула (2.25) применяется, в частности, для расчёта шумов квантования в цифровых цепях .
2.9 Секционирование.
Реальные сигналы могут иметь значительную протяжённость во времени, поэтому обработка таких сигналов на ЭВМ осуществляется посекционно. Расчёты по каждой секции выполняются по формуле круговой свёртки
,
где h(nT) - импульсная характеристика, определяющая способ обработки сигнала .
Каждая секция совмещается с предидущей секцией с учётом сдвига между секциями входного сигнала .
Применяются два основных метода секционирования: метод перекрытия с суммированием и метод перекрытия с накоплением.
1. Метод перекрытия с суммированием.
Сигнал x(nT) разбивается на секции длиной L. Отсюда - длина секции
,
- длина секции
,
- длина
.
Длина секции больше длины секции
на
. Поэтому смежные секции выходного сигнала
перекрываются на интервале длиной
. На интервале перекрытия необходимо выполнить арифметические операции по суммированию отсчётов.
2. Метод перекрытия с накоплением.
Сигнал x(nT) разбивается на секции длиной L. Затем каждая секция наращивается слева участком предидущей секции длиной . Поэтому
- длина
,
- длина
,
- длина
.
Искусственное удлинение каждой секции приводит к тому, что первые и последние отсчётов секции
являются ложными и поэтому отбрасываются. Оставшиеся L отсчётов каждой секции, являются истинными, поэтому смежные секции
совмещаются без перекрытия и без зазора.
Пример. Осуществить посекционную обработку сигнала
x(nT) = { 1,0; 0,5 }, если h(nT)= { 1,0; 0,5 }.
Решение.
Применим метод перекрытия с накоплением.
Пусть L = 1. Отсюда ;
, поэтому после искусственного удлинения секций:
.
Выравниваем периоды сигналов для применения круговой свёртки:
N = N1 + N2- 1 = 3. Следовательно x0(nT)= {0; 0,4; 0}, x1(nT)= {0,4; 0,8; 0}, x2(nT)= {0,8; 0; 0} После свёртки по каждой секции и отбрасывания отсчётов получаем:
отсюда
y(nT)= {0,4; 1,0; 0,4}.
Метод перекрытия с накоплением получил преимущественное распространение, поскольку здесь не требуется проведения дополнительных арифметичкских операций после обработки каждой секции.
3. Цифровые фильтры.
3.1 Цифровая система обработки сигналов.
Обработка дискретных сигналов осуществляется как правило в цифровой форме: каждому отсчёту ставится в соответствие двоичное кодовое слово и, в результате, действия над отсчётами заменяются на действия над кодовыми словами. Таким образом дискретная цепь становится цифровой цепью, цифровым фильтром (ЦФ). Перевод отсчётов в двоичные кодовые слова происходит в аналогово-цифровом преобразователе (АЦП). На выходе ЦФ (рис.3.1) осуществляется обратная операция: кодовые слова в цифро-аналоговом преобразователе превращаются в отсчёты дискретного сигнала и, наконец, на выходе, синтезирующего фильтра (СФ) формируется обработанный аналоговый сигнал.
Дискретная и цифровая цепи описываются одинаковыми уравнениями. Отличие состоит в приближённом характере представления отсчётов сигнала кодовыми словами конечной размерности (ошибки квантования). Поэтому сигнал на выходе цифровой цепи отличается от идеального варианта на величину погрешности квантования.
Цифровая техника позволяет получить высокое качество обработки сигналов несмотря на ошибки квантования: ошибки (шумы) квантования можно привести в норму увеличением разрядности кодовых слов. Рациональные способы конструирования цифровой цепи также способствуют минимизации уровня шумов квантования.
Расчёт цифровой цепи по заданным требованиям к её характеристикам имеет ряд принципиальных особенностей в зависимости от наличия обратной связи. Эти особенности являются следствием конечной длины импульсного отклика нерекурсивного ЦФ.
Поэтому нерекурсивные фильтры содержат большое число элементов цепи, но вместе с тем имеют целый ряд важных достоинств: нерекурсивные ЦФ всегда устойчивы, позволяют строить фильтры с минимальной линейной фазой, отличаются простой настройкой. С учётом изложенного становятся понятны причины, по которым методы расчёта нерекурсивных ЦФ и рекурсивных цифровых фильтров принято рассматривать отдельно.
3.2 Расчёт нерекурсивных ЦФ общего вида.
Цель расчёта нерекурсивных цифровых фильтров (рис. 3.2,а) заключается в расчёте значений коэффицентов и их числа N по допускам на системные характеристики, а так же в расчёте разрядности кодовых слов и выборе оптимального динамического диапазона ЦФ по нормам на помехозащищённость сигнала и вероятность перегрузки системы, что определяется эффектами конечной разрядности кодовых слов.
Требования к системным характеристикам чаще задаютс относительно одной из них: импульсной или частотной. Поэтому различают расчёт ЦФ во временной области и расчёт ЦФ в частотной области.
Расчёт ЦФ во временной области.
Требуемая импульсная характеристика в общем случае имеет бесконечную протяжённость во времени. Поэтому вначале необходимо задаться конечным числом N первых отсчётов требуемой импульсной характеристики
.
Оставшиеся отсчёты по причине их малости отбрасывают и определяют погрешность приближения, которую можно оценить, например, по среднеквадратичному критерию близости.
Коэффициенты фильтра принимаются равными соответствующим отсчётам требуемой импульсной характеристики. После расчёта разрядности коэффицентов, шумов квантования и масштабирующих коэффицентов остаётся оценить погрешность реализованной импульсной характеристики по отношению к требуемой и принять решение о необходимости повторного расчёта.
Расчёт ЦФ в частотной области.
Вначале необходимо продолжить требуемую частотную характеристику на диапазон [0,5wд; wд] по правилам комплексно-сопряжённой симметрии (рис. 3.2,б), что определяется вещественным характером импульсного отклика. По характеристикам следует определить N комплексных частотных отсчётов
,
где число N выбирается ориентировачно с таким расчётом, чтобы плавным соединением точек и
требуемые кривые восстановились без заметных искажений.