135865 (722703), страница 6

Файл №722703 135865 (Цифровая обработка сигналов) 6 страница135865 (722703) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

H(Z) = = P(Z) (3.10)

где

P(Z) = 1 - dZ-N, Fk(Z) = 1 / (1 - bkZ-1), d = ej2pk, bk = e j2pk/N (3.11)

Схема фильтра, соответствующего (3.10), приведена на Рис. 3.10, а. Схемы звеньев фильтра, соответствующих (3.11), приведены на Рис. 3.10, б.

Схема фильтра на рис. 3.10 применяется с учетом поправок, обусловленных особенностями расположения нулей и полюсов передаточной функции.

Нули и полюсы H(Z) (3.10), т.е. корни уравнений

1- ej2pk Z-N = 0, 1 - e j2pk/N Z-1 = 0

Расположены на единичной окружности плоскости Z в точках

Zk = e j2pk/N

и взаимно компенсируется. Но компенсация получается неполной по причине конечной разрядности кодовых слов, что приводит к скачкам частотной характеристики фильтра и, более того, не исключена вероятность самовозбуждения цепи. Поэтому рекомендуется смещать точки Zk внутрь единичного круга на малую величину, т.е.

Zk = e -aT/N e j2pk/N, где aТ < 10-5

что соответствует коэффициентам фильтра

d = e-aT e j2pk, bk = e-aT e j2pk/N (3.12)

Небольшая поправка коэффициентов фильтра (3.12) практически не отразится на характеристиках фильтра.

3.6.2 Частотная характеристика фильтра

Частотная характеристика фильтра по методу частотной выборки получается подстановкой

Z = ejwT,

в (3.10). Отсюда, с учетом формулы Эйлера,

H(jw)=

следовательно

(3.13)

что соответствует ряду Котельникова для спектров дискретных сигналов. Таким образом, частотную характеристику не рекурсивного ЦФ можно представить как в форме ряда Фурье, так и в форме ряда Котельникова.

Каждая из отсчетных функций в (3.13)

(3.14)

на частоте w = kw1 принимает значение частотной выборки H(jkw1); остальные отсчетные функции на этой частоте обращаются в нуль. На графике Рис. 3.11 показана в качестве примера некоторая АЧХ и ее составляющие - равносмещенные отсчетные функции для случая N=8, где отсчетные функции представлены главным лепестком, кроме модуля отсчетной функции при К=0, которая изображена полностью.

С учетом вышеизложенного становится понятным, что регулировка частотных отсчетов фильтра по методу частотной выборки является взаимонезависимой подобно взаимонезависимой регулировке отсчетов импульсной характеристики не рекурсивного ЦФ по схеме на Рис. 3.2, а.

Расчет фильтра начинается с ориентировочного выбора величины N. Коэффициенты фильтра приравнивают к соответствующим отсчетам требуемой частотной характеристики. Особый случай имеет место в точках разрыва характеристики: отсчеты, расположенные в окрестности точек разрыва, т.е. в переходной области, необходимо выбирать с таким расчетом, чтобы получить удовлетворительное приближение реализованной характеристики к требуемой в диапазоне частот, прилегающем к переходной области. Наиболее часто в переходную область попадает 1 или 2 отсчетных частоты. В этом случае удовлетворительный результат аппроксимации можно получить простым подбором модуля отсчетов в переходной области.

После проверочного расчета частотных характеристик по формуле 3.10 или 3.13 принимается решение о необходимости повторного расчета.

3.6.3. Схема фильтра с вещественными отводами

Реализация фильтров по схеме на Рис. 3.10, а сопряжена с некоторыми особенностями, обусловленными комплексным характером коэффициентов в отводах. Поэтому на практике получил распространение еще один вариант схемы такого фильтра, отличающийся вещественным характером коэффициентов.

Фильтр с вещественными коэффициентами получается за счет объединения каждой пары отводов с индексами К и (N-K), которая является комплексно-сопряженной по причине комплексно-сопряженной симметрии частотных характеристик фильтра относительно частоты 0,5wд. В результате

(3.15)

где a0k = cos jk, a1k = -bk cos (jk - qk), b1k = -2bk cos qk, b2k = b2k

Схема вещественного отвода, соответствующего (3.15), приведена на Рис. 3.12.

Завершая обсуждение фильтра с частотной выборкой следует отметить еще одно важное качество таких фильтров: в схеме отсутствуют звенья, соответствующие нулевым значениям требуемой АЧХ. В результате, например, схема частотно-селективного фильтра существенно упрощается, сохраняя при этом возможность получения линейной фазы.

3.7. Расчет рекурсивных фильтров. Метод билинейного преобразования.

Методы расчета рекурсивных ЦФ можно разделить на прямые и косвенные. Прямые методы предполагают расчет непосредственно рекурсивного ЦФ, косвенные используют в качестве промежуточного этапа расчет аналогового фильтра (АФ).

К числу косвенных методов относится метод билинейного преобразования, основанный на таком преобразовании частот, при котором частотная ось сжимается до конечных размеров. Формула частотного преобразования

или

где w - реальная частота, т.е. частота проектируемого ЦФ, - расчетная частота, т.е. частота вспомогательного АФ, , - соответствующие комплексные частоты.

На рис. 3.13, а приведен график зависимости расчетной частоты от реальной частоты, на Рис. 3.13, б - пример соответствия кривых АЧХ фильтров АФ и ЦФ.

Связь комплексных переменных вспомогательного АФ и реального ЦФ, т.е. и Z определяется равенством

(3.17)

Формула (3.17) получается подстановкой в (3.16) Z = epT. В результате

Перечислим последовательность этапов расчета ЦФ методом билинейного преобразования.

1. Перевести требуемые характеристики и нормы ЦФ в соответствующие требования к АФ, применяя формулу

2. Рассчитать передаточную функцию АФ , применяя методы расчета аналоговых фильтров.

3. Определить передаточную функцию ЦФ H(Z) по известной

4. Построить схему ЦФ по H(Z).

5. Выполнить необходимые расчеты по учету эффектов конечной разрядности.

Пример. Рассчитать рекурсивный ЦФ нижних частот методом билинейного преобразования по следующим исходным данным:

ПП ® [0; 200] Гц, перех. область ® [200; 300] Гц, DА = 3 дБ, Аmin­­­ = 15 дБ.

Решение

Выбираем fд = 800 Гц.

Контрольные частоты для перевода норм ЦФ в нормы АФ: 0; 200 Гц; 300 Гц.

Расчетная формула для преобразования частот

В результате

f = 0 ® ® Wн = 0

f = 200 Гц ® 1600 ® Wн = 1

f = 300 Гц ® 3840 ® Wн = 2,4

где Wн = - нормированная частота ФНЧ,

= 1600 - частота среза ФНЧ.

Основная формула расчета АФ

В данном случае достаточно ограничиться аппроксимирующим полиномом Баттерворта второго порядка. Поэтому, учитывая что Е=1 для DА = 3 дБ, получаем

следовательно

Отсюда полюсы Н(рн): рн 1,2 = -0,707 ± j 0,707,

что соответствует нормированной передаточной функции

Подставляя здесь

,

получаем денормированную передаточную функцию АФ

После подстановки здесь (3.17), получаем передаточную функцию рекурсивного ЦФ

Что соответствует схеме рекурсивного ЦФ, приведенной на Рис. 3.14, а.

Уместно напомнить, что схему цепи по дробной передаточной функции от Z удобно строить в 2 этапа: вначале строится не рекурсивная часть, соответствующая числителю Н(Z), затем каскадно с ней - рекурсивная часть, соответствующая дроби, в числителе которой - единица.

График реализованной АЧХ приведен на рис. 3.14, б.

Нелинейная зависимость частотного преобразования (3.16) определяет как недостатки, так и достоинства метода билинейного преобразования. Недостаток в том, что наклонные участки частотной характеристики изменяют свой наклон тем больше, чем выше частота. Поэтому, например, линейная фаза после преобразования (3.16) становится нелинейной. Достоинство определяется отсутствием ошибок наложения при переходе АФ ® ЦФ, что позволяет получить высокие уровни ослабления в ПН при конструировании частотно-селективных фильтров.

4. Эффекты конечной разрядности и их учет.

4.1. Шум квантования и шумовая модель.

Отсчеты сигнала на входе цифровой системы квантуются к ближайшему из разрешенных уровней. Расстояния между смежными уровнями равно шагу квантования D. Шаг квантования и разрядность кодовых слов связаны соотношением

D = 2-b (4.1)

где b - разрядность кодовых слов.

Значение младшего разряда кодовых слов численно равно шагу квантования.

Разность истинного и квантованного числа называется ошибкой квантования. Ошибка квантования е(n) определяется неравенствами:

Характеристики

Тип файла
Документ
Размер
7,26 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее