135865 (722703), страница 8

Файл №722703 135865 (Цифровая обработка сигналов) 8 страница135865 (722703) страница 82016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

Чувствительность частотных характеристик достаточно оценить на частоте полюса максимальной добротности wк, которая определяется, согласно (4.6), значением угла полюса

Qк = wкТ

На частоте wк чувствительность принимает максимальное значение:

Оценку максимума чувствительности по коэффициенту ai можно применить, в частности, к расчету разрядности коэффициентов по допускам на отклонение АЧХ. Расчет начинается с определения среднеквадратичной чувствительности по всем коэффициентам ai.

(4.11)

Необходимость среднеквадратичного критерия объясняется разным сочетанием знаков чувствительностей в зависимости от частоты, поэтому суммарная чувствительность может оказаться равной нулю даже на частоте wк.

В режиме малых приращений коэффициентов реакция системы проявляется по линейному закону, поэтому можно воспользоваться пропорцией

1% -

dS - dН

и определить среднеквадратичное значение погрешности коэффициентов dS по допуску на отклонение АЧХ dН.

Сравнивая требуемое значение dS и реализованное значение среднеквадратичной погрешности коэффициентов d'S

d'S = (4.12)

можно определить разрядность коэффициентов методом проб.

В качестве примера анализа цепи по функции чувствительности можно сделать ссылку на анализ чувствительности полосового ЦФ к изменению тактовой частоты. Оказалось, что смещение полосы пропускания увеличением тактовой частоты, при неизменной ширине полосы пропускания, потребует увеличения разрядности коэффициентов.

4.6. Масштабирование сигнала в цепи.

Уровень шума квантования на выходе источника шума не зависит от уровня сигнала: уровень шума определяется величиной шага квантования. Поэтому соотношение сигнал/шум тем выше, чем выше уровень сигнала в цепи. Но высокие уровни сигнала могут привести к переполнению сумматоров цепи, т.е. к выходу числа за пределы разрядной сетки слева в регистре сумматора, на котором вырабатывается сумма. В системе чисел с фиксированной запятой таким пределом называется единица.

Переполнение сумматора равносильно ограничению сигнала сверху пороговым нелинейным элементом в аналоговой цепи.

Поэтому возникает необходимость в масштабировании сигнала с таким расчетом, чтобы получить высокие уровни сигнала в цепи с минимальным риском перегрузки сумматоров. Масштабирование осуществляется специальным умножителем, который устанавливается на входе цепи. На рис. 4.3. приведен пример цепи с масштабным умножителем.

Расчет множителя l выполняется по каждому сумматору отдельно. Из множества расчетных значений l необходимо выбрать наименьшее, т.е. l того сумматора, который наиболее подвержен опасности переполнения.

Расчетные значения l рекомендуется округлить в меньшую сторону до ближайшего числа кратного степени 2: операцию умножения на число кратное степени 2 можно выполнить простым сдвигом числа в числовом регистре, что практически не требует затрат времени и оборудования на умножение поступающих кодовых слов.

Рассмотрим методы расчета масштабного множителя.

4.6.1. Расчет по условию ограничения максимума сигнала.

Сигнал на входе i-ого сумматора определяется по формуле свертки

где x(n) - сигнал на входе цепи

lhi(n) - импульсная характеристика участка цепи от входа до выхода i-ого сумматора.

Максимум модуля сигнала yi­(n) имеет место при соблюдении условия:

x(n-k)={+1, если hi(k)>0

-1, если hi(k)<0}

поэтому

Если ограничить максимум модуля сигнала единицей, т.е.

,

то требование отсутствия переполнения сумматора выполняется при условии:

(4.13)

Расчет масштабного множителя по (4.13), т.е. по условию ограничения максимума сигнала, приводит к режиму работы цепи, при котором перегрузка сумматоров исключена, но уровни сигнала в цепи - низкие. Поэтому чаще применяется вариант расчета по условию ограничения энергии сигнала, который приводит к более высоким уровням сигнала.

4.6.2. Расчет по условию ограничения энергии сигнала.

Энергия сигнала на выходе i-го сумматора определяется согласно (2.25) по формуле

Формула справедлива для случайных сигналов с равномерным энергетическим спектром, что примерно соответствует реальным сигналам.

Сигнал на входе цепи не превышает единицы по абсолютной величине, поэтому сигнал на выходе i-го сумматора не превысит, наиболее вероятно, модуля единицы, если потребовать выполнение условия:

1.

2. Корреляционные связи сигнала и системы - отсутствуют.

В результате исходная формула принимает вид

Отсюда

(4.14)

Масштабный умножитель с коэффициентом (4.14) обеспечивает относительно высокие уровни сигнала в цепи, но возникает опасность перегрузок сумматоров. Перегрузки маловероятны и кратковременны, поэтому для многих систем обработки сигналов вполне допустимы, тем более, что отрицательный эффект от перегрузок можно ослабить, если подставлять единицу на выход сумматора по признаку переполнения.

4.6.3. Расчет по условию ограничения максимума усиления цепи.

Усиление участка цепи от входа цепи до выхода i-го сумматора в значительной мере определяет условия перегрузки i-го сумматора. Поэтому, ограничивая максимум усиления единицей

приходим к режиму работы цепи, при котором опасность перегрузки i-го сумматора становится минимальной, поскольку сигнал на входе цепи не превышает по модулю единицы. Отсюда расчетная формула для масштабного множителя

(4.15)

Частоту максимального усиления wк можно определить по известному углу высокодобротного полюса Qк = wкТ (4.6) передаточной функции Hi(Z).

Расчет масштабного множителя по (4.15) применяется чаще при каскадной реализации, когда масштабирование можно выполнить внутри каждого звена.

4.7. Динамический диапазон ЦФ.

Динамический диапазон цепи определяется границами уровня выходного сигнала. Для цифровой цепи, функционирующей в системе чисел с фиксированной запятой, динамический диапазон равен

[D; 1,0],

где D - значение младшего разряда кодовых слов.

Эффективность использования динамического диапазона оценивается с одной стороны - вероятностью перегрузки сумматоров, с другой - величиной помехозащищенности сигнала на выходе цепи относительно уровня шумов квантования на выходе цепи

(4.16)

где Rш - помехозащищенность сигнала,

- дисперсия шума

- усредненная энергия сигнала,

Рс, Рш - мощности сигнала и шума.

Масштабирование сигнала позволяет добиться высокой эффективности использования динамического диапазона цепи.

4.8. Предельные циклы.

Предельными циклами называется ложный сигнал, который возникает на выходе рекурсивного ЦФ, если на вход цепи поступает сигнал в виде константы. Причиной появления предельных циклов является процедура квантования сигнала в умножителях, охваченных обратной связью.

Пример. Определить форму предельных циклов заданной цепи (рис. 4.4), если сигнал на выходе умножителя округляется на уровне десятых долей, а сигнал на входе в момент t=0 прерывается, т.е. наступает пауза. Состояние цепи к моменту t=0 характеризуется условием: y(-1) = 0,5.

Решение.

Разностное уравнение цепи: y(n) = x(n) + 0,8y(n-1)

Решение разностного уравнения.

n=0 : y(0) = 0 + 0,8 * 0,5 = 0,4

n=1 : y(1) = 0 + 0,8 * 0,4 = 0,32 » 0,3

n=2 : y(2) = 0 + 0,8 * 0,3 = 0,24 » 0,2

n=3 : y(3) = 0 + 0,8 * 0,2 = 0,16 » 0,2

n=4 : y(4) = 0 + 0,8 * 0,2 = 0,16 » 0,2

............................................................

Следовательно y(n) = {0,4; 0,3; 0,2; 0,2; 0,2; ... }, т.е. сигнал "зависает" на уровне 0,2. Если знак коэффициента 0,8 заменить на противоположный, то форма предельных циклов принимает вид знакопеременной последовательности y(n) = {-0,4; 0,3; -0,2; 0,2; -0,2; ... }.

В цепях высокого порядка предельные циклы имеют сложную форму и определяются, при необходимости, моделированием фильтра на ЭВМ.

Ложные сигналы в системах передачи информации не допустимы, поэтому применяются различные способы борьбы с предельными циклами. Можно, например, подмешивать к сигналу на входе цепи псевдослучайную последовательность нулей и единиц на уровне младшего разряда кодовых слов. Но в этом случае необходимо увеличить на единицу разрядность кодовых слов, чтобы помехозащищенность сигнала оставить на прежнем уровне.

5. Восстановление непрерывного сигнала.

Последовательность кодовых слов на выходе цифрового фильтра необходимо преобразовать в аналоговый сигнал. Преобразование осуществляется с помощью двух устройств: ЦАП и ФНЧ. В ЦАП происходит преобразование каждого кодового слова в узкий импульс, амплитуда которого соответствует значению кодового слова. В ФНЧ происходит выделение той части спектра, которая соответствует спектру аналогового сигнала.

5.1. Характеристики ЦАП.

Цап преобразует отсчеты сигнала в виде кодовых слов в отсчеты сигнала в виде импульсов. Преобразование происходит с постоянным коэффициентом преобразования, не зависящим от величины отсчета. Следовательно ЦАП является линейной системой, импульсная характеристика которой совпадает с формой импульсов на выходе ЦАП. Поэтому сигнал на выходе ЦАП можно определить по формуле свертки аналоговых сигналов

yцап(t) = y(t) Е hцап(t) (5.1)

где y(t)=y(nT) - дискретный сигнал на входе ЦАП,

hцап(t) - импульсная характеристика ЦАП.

На рис. 5.1, а,в показана форма сигналов на входе и выходе ЦАП на примере импульсной характеристики в форме прямоугольного импульса длительностью t (Рис. 5.1, б)

В частотной области свертке (5.1) соответствует произведение спектров

Yцап (jw) = Y (jw) * Hцап (jw) (5.2)

где, согласно (1.3),

Y (jw) =

Yа(jw) - спектр аналогового сигнала, подлежащего восстановлению,

Hцап(jw) - передаточная функция ЦАП.

Множитель Т-1 в формуле Y (jw) принято относить к передаточной функции ЦАП, поэтому передаточная функция ЦАП для случая, соответствующего импульсу на Рис. 5.1, б, запишется так

Hцап(jw) = (5.3)

Отсюда, если t << Т, получаем

Hцап(jw) » t / Т (5.4)

что подтверждается известным фактом спектральной теории: спектр короткого импульса равен его площади и не зависит от формы импульса.

5.2. Погрешности восстановления.

Аналоговый сигнал ya(t) обращается на выходе ФНЧ, который выделяет спектр частот [0; 0,5wд], соответствующий спектру Yа(jw).

Yа(jw) = Y (jw) * Hцап (jw) * Hфнч (jw) (5.5)

Неравномерность реальных частотных характеристик ЦАП и ФНЧ приводит к искажениям восстанавливаемого непрерывного сигнала. На рис. 5.2 показаны характерные особенности реальных АЧХ восстанавливающих устройств.

Искажения ЦАП обусловлены наклоном АЧХ. На Рис. 5.2 АЧХ соответствует импульсной характеристике в форме прямоугольного импульса длительностью t. Но с уменьшением t, согласно (5.3) и (5.4), падает усиление ЦАП, что приводит к малым уровням сигнала и, соответственно, к низкой помехозащищенности сигнала по отношению к собственным помехам системы.

Искажения ФНЧ увеличиваются по мере приближения к частоте среза ФНЧ wс = 0,5wд. Поэтому рабочую полосу частот сигнала Y (jw) целесообразно размещать на неискаженном участке полосы пропускания ФНЧ, что можно сделать увеличением тактовой частоты wд цифрового фильтра. Таким образом, если имеется возможность увеличить тактовую частоту, то в качестве ФНЧ можно использовать простую цепочку RC. В противном случае качественные показатели восстанавливающего устройства приходится улучшать усложнением схемы ФНЧ. Наконец, погрешности восстановления можно скомпенсировать, если создавать соответствующие предыскажения в ЦФ. В этом случае нормы на проектируемый ЦФ необходимо поправить в расчете на реальные характеристики ЦАП и ФНЧ.

Литература.

1. Гольденберг Л.М. и др. Цифровая обработка сигналов. - Учебное пособие для вузов. - М.: Радио и Связь, 1990 г.

2. Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Радио и связь, 1986 г.

3. Гольденберг Л.М. и др. Цифровая обработка сигналов. - Задачи и упражнения. Учебное пособие для вузов. - М.: Радио и Связь, 1992 г.

4. Карташев В.Г. Основы теории дискретных сигналов и цифровых фильтров. - М.: Высшая школа, 1982 г.

5. Гольденберг Л.М. и др. Цифровая обработка сигналов. - Справочник - М.: Радио и Связь, 1985 г.

6. Лэм Г. Аналоговые и цифровые фильтры. Расчет и реализация. - М.: Радио и связь, 1982.

7. Антонью А. Цифровые фильтры: анализ и проектирование. - М.: Радио и связь, 1983г.

8. Крук Б.И. и др. 25 вопросов по цифровым фильтрам. Издание НЭИС, 1990 г.

9. Зеневич А.Ф. Дискретные сигналы и цепи. Учебное пособие. Издание НЭИС, 1992 г.

Характеристики

Тип файла
Документ
Размер
7,26 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее