elektrotex (722567), страница 4
Текст из файла (страница 4)
Недостатками фоторезисторов являются значительная зависимость сопротивления от температуры, характерная для полупроводников, и большая инерционность, связанная с большим временем рекомбинации электронов и дырок после прекращения облучения. Постоянная времени различных типов фоторезисторов колеблется в пределах 410-5 …310-2 с. Так, для фоторезисторов марок ФС-КО, ФС-К1 = 210-2 с, для ФС-А1 – = 410-2 с. Это ограничивает быстродействие и затрудняет контроль быстрых изменений освещенности в приборах с фоторезисторами (рис.4.3).
2. Описание экспериментальной установки
Ф оторезистор (рис. 4.4) состоит из диэлектрической пластины 1, на которую нанесен слой светочувствительного полупроводникового вещества 2. С противоположных сторон этого слоя укреплены электроды 3. Для защиты от механических воздействий фоторезистор запрессовывается в пластмассовую оправу с прозрачным окном, штырьки которой соединены с его электродами.
В лабораторной установке фоторезистор располагается внутри темновой камеры на специальной панели. Рядом размещается фотоэлемент, являющийся датчиком люксметра – прибора, измеряющего освещенность. В противоположном конце камеры на одинаковом расстоянии от фоторезистора и фотоэлемента помещен источник света с регулируемым световым потоком. Ручка регулятора потока расположена на лицевой панели установки. Там же указаны облучаемая площадь и темновое сопротивление фоторезистора. Для измерения сопротивления и тока фоторезистора используется универсальный цифровой вольтметр. Вольтамперные характеристики снимают по схеме рис. 2.5.
3. Порядок проведения работы.
-
Определение зависимости сопротивления фоторезистора от освещенности.
Подготовить цифровой вольтметр к измерению сопротивлений, для чего переключатель рода работ установить в положение «R», предел измерения – «10 мОм». Подключить цифровой вольтметр к клеммам фоторезистора, расположенным на правой боковой панели лабораторной установки.
Подать напряжение на стенд, переведя тумблер питания, расположенный на лицевой панели, в положение «Вкл». Изменяя освещенность регулятором на лицевой панели в соответствии со значениями в табл. 4.1, измерить и занести в табл. 4.1 сопротивление фоторезистора.
Таблица 4.1
E | лк | 0 | 5 | 10 | 25 | 50 | 75 | 100 | 125 | 150 |
R | мОм | Rт | ||||||||
=Rт/R | – |
-
Снятие семейства вольтамперных характеристик фоторезистора.
Собрать схему в соответствии с рис. 2.5. Подготовить цифровой вольтметр к измерению тока, для чего переключатель рода работ поставить в положение «мкА», предел измерения «100». Установить освещенность Е = 10 лк. Изменяя напряжение на выходе источника постоянного напряжения от 0 до 30 В (через 5 В), измерить и занести в табл. 4.2 значения тока через фоторезистор. Повторить опыт при значениях освещенности 15, 25 лк. Темновой ток (при Е = 0) рассчитать по закону Ома:
Таблица 4.2
E = 0 | Е= 10 лк | Е =15 лк | Е = 25 лк | |||||||
U | Io | I | Iф | Sи | I | Iф | Sи | I | Iф | Sи |
В | мкА | мкА | мкА | мкА/лмВ | мкА | мкА | мкА/лмВ | мкА | мкА | мкА/лмВ |
0 | ||||||||||
… | ||||||||||
30 |
-
Определение зависимости интегральной чувствительности фоторезистора от величины освещенности.
Зависимость Sи(E) определяется по схеме предыдущего опыта при неизменном значении напряжения U = 25 В. Результаты опыта и расчетов занести в табл. 4.3.
Таблица 4.3
E | лк | 0 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 150 |
I | мкА | |||||||||
Iф | мкА | |||||||||
Sи | мкА/лмВ |
4. Оформление отчета
-
Привести схемы экспериментальных установок, данные измерительных приборов и исследуемого фоторезистора.
-
Оформить таблицы с результатами измерений и вычислений. При расчетах использовать формулы (4.1), (4.2).
-
Построить графики R(E), Sи(E) и семейство ВАХ U(I) фоторезистора при освещенностях Е = 10, 15, 25 лк.
-
Сделать краткие выводы по результатам проведенных исследований.
Контрольные вопросы
-
Что такое фоторезистор, из каких материалов его изготавливают?
-
Чем обусловлена фотопроводимость полупроводников?
-
В чем отличие между внутренним и внешним фотоэффектом?
-
Что такое темновое сопротивление, от чего зависит его величина?
-
Что понимают под интегральной чувствительностью фоторезистора?
-
Что такое световая характеристика? В чем причина ее нелинейности?
-
Почему ВАХ фоторезистора при постоянной освещенности линейна?
-
В чем основные недостатки фоторезисторов?
Работа 6. Исследование свойств сегнетоэлектриков
Цель работы – экспериментальная проверка основных теоретических положений, определяющих физические процессы в сегнетоэлектриках при их периодической переполяризации; приобретение практических навыков в построении основной кривой поляризации D(E) и определении потерь в сегнетоэлектрике.
1. Краткие сведения из теории
Сегнетоэлектриками называют кристаллические диэлектрики, диэлектрическая проницаемость которых достигает больших значений (порядка 104…105) и зависит от напряженности электрического поля, температуры и предварительной поляризации.
При поляризации любого диэлектрика , где
– вектор электрического смещения,
– вектор напряженности внешнего электрического поля,
– поляризованность диэлектрика, которая представляет собой электрический момент единицы его объема, o – электрическая постоянная.
Поляризованность вещества пропорциональна напряженности электрического поля:
где – абсолютная диэлектрическая восприимчивость вещества. В силу этого
. Параметр
(6.1) носит название абсолютная диэлектрическая проницаемость и характеризует способность диэлектрика к поляризации. Относительная диэлектрическая проницаемость определяется выражением
. (6.2)
Сегнетоэлектрики обладают самопроизвольной (спонтанной) поляризацией, связанной с наличием в структуре материала микроскопических областей – доменов, внутри которых диэлектрик поляризован до насыщения. Отдельные домены имеют различные направления электрических моментов. Результирующий электрический момент при этом равен нулю. Если сегнетоэлектрик подвергнуть воздействию внешнего электрического поля, домены ориентируются по полю, и он оказывается поляризованным во всем объеме.
Вследствие доменной структуры поляризованность и диэлектрическая проницаемость сегнетоэлектриков достигает огромных по сравнению с линейными диэлектриками значений.
Процесс поляризации сегнетоэлектриков во внешнем электрическом поле имеет две основные стадии. На первой стадии происходит смещение границ и рост тех доменов, ориентация векторов поляризации которых наиболее близка к ориентации внешнего поля. На второй – вращение векторов поляризации доменов и их установка параллельно направлению поля. В сильных полях число доменов, не сориентированных по полю, уменьшается, что приводит к постепенному замедлению поляризации – насыщение сегнетоэлектрика.
П
ри циклическом изменении напряженности поля в сегнетоэлектрике наблюдается явление диэлектрического гистерезиса, состоящее в фазовом запаздывании электрического смещения относительно напряженности внешнего поля (рис.6.1).
Кривая, соединяющая вершины гистерезисных циклов поляризации называется основной кривой поляризации. На рис. 6.2 приведены типовые графики основной кривой поляризации и зависимости диэлектрической проницаемости сегнетоэлектрика от напряженности электрического поля. При определенной напряженности Еа, которая соответствует касательной 0а, проведенной из начала координат к кривой D = f(E), диэлектрическая проницаемость достигает максимального значения.