CBRR0915 (719125), страница 14
Текст из файла (страница 14)
заметим, что для получения числа, принадлежащего совокупности {Si}, имеющей плотность распределения f(x), необходимо приведенное уравнение разрешить относительно Si .
Пусть, например, требуется получить случайные числа с экспоненциальным законом распределения
В силу приведенного соотношения преобразования имеем
Интегрируя, получим
Отсюда
Понятно, что генерация равномерной последовательности значений в интервале [0,1] и подстановка их в полученное выражение обеспечивает генерацию случайной последовательности с экспоненциальным законом распределения вероятностей.
При попытке преобразования равномерного распределения в заданное может оказаться, что разрешить уравнение
относительно Si, как это проделано в примере, весьма трудно. Это случается, например, когда интеграл от f(x) не выражается через элементарные функции или когда плотность f(x) задана только графически.
В такой ситуации для преобразования используется метод Неймана.
Условия для его реализации:
случайная величина x может быть определена на интервале [a,b];
плотность распределения вероятностей f(x) на интервале [a,b] ограничена f(x) <= Mo.
Разыгрывание (генерация) значений x, распределенных с плотностью вероятностей f(x), осуществляется следующим образом:
1)Генерируем два случайных значения R1 и R2 величины равномерно распределенной на интервале [0,1] и получаем случайную точку на графике f(x) с координатами
x’ = a + R1*(b - a)
y’ = R2* Mo
y
Mo
y’ Г
a x’ b x
Рис.5.4.1.
2)Если полученная точка лежит под кривой y = f(x), то полагаем, что первое значение случайной величины, соответствующей плотности распределения вероятностей f(x) равно
x1 = a + R1*(b - a) = x’
Если же полученная точка лежит над кривой y =f(x), то пара случайных чисел R1 и R2 отбрасывается, выбирается новая R3 и R4 и операции пп.1,2 повторяются.
Случайные числа xi, полученные таким образом, имеют плотность распределения вероятностей f(x).
Получение случайных величин, плотность вероятностей которых - нормальный закон, имеет свои особенности.
Основное уравнение преобразования в этом случае имеет следующий вид:
В явном виде оно неразрешимо. Поэтому приходится использовать другой путь. Так согласно центральной предельной теореме теории вероятностей известно, что нормальный закон распределения возникает во всех ситуациях, когда случайная величина может быть представлена в виде суммы достаточно большого числа независимых (или слабо зависимых) элементарных слагаемых, каждое из которых в отдельности мало влияет на сумму. Это дает возможность приближенно моделировать нормальную плотность распределения вероятностей суммированием чисел, равномерно распределенных на интервале [0,1]:
a = g1 + g2 + .....+ gn
Эта сумма асимптотически нормальна с МО и с СКО
Но для равномерной плотности распределения
Значит
Тогда, если i-ое значение нормальной случайной величины a соответствует i-му эксперименту суммирования n равномерно распределенных чисел, то
ai = gi1 + gi2 + .....+ gin
Значит, получение нормально распределенной последовательности {Si} с математическим ожиданием mз и СКО - sз осуществимо путем нормирования и перемасштабирования последовательности {ai}, то есть, приведения ее к заданным числовым характеристикам:
Л Е К Ц И Я 5.5
Модель системы распознавания образов
Теперь после изложения общих представлений о моделировании вообще можно перейти к построению моделей конкретных систем - систем распознавания образов. Поэтому начнем с того, что определим в первом приближении цель моделирования систем распознавания.
Цель компьютерного моделирования систем распознавания - их исследовательские испытания для оценки эффективности распознавания в приемлемые сроки и во всем факторном пространстве представления объектов (явлений, процессов) и возможностей измерителей их характеристик.
Можно было бы предположить, что такое определение касается только сложных СР, в состав которых входят многочисленные и разнородные средства измерений или на информационной основе которых строятся сами системы распознавания. Для таких систем не вызывает сомнения необходимость применения опытно-теоретического метода испытаний. Поэтому для них и должна идти речь о сроках и факторном пространстве применения СР. То есть, к компьютерному моделированию прибегают чаще всего постольку, поскольку не могут в приемлемое время провести натурные испытания СР во всем факторном пространстве поведения объектов (явлений, процессов) и измерителей их характеристик.
И далее, казалось бы, что системы распознавания, для которых натурные испытания достаточно дешевы, а способы моделирования входных воздействий достаточно сложны и неясны, не следует вообще и моделировать. Кажется, что все можно получить в эксперименте.
Если задаться целью, то можно найти настолько простые системы.
Однако в большинстве случаев кажущаяся простота и дешевизна натурных экспериментов (испытаний) при неопределенности методов построения моделей входных воздействий скрывает от испытателя характеристики факторного пространства состояния и поведения объектов распознавания. При этом не удается определить фактическую эффективность, а оцененное значение ее только успокаивает (“ведь оценка получена!”), так как, к сожалению, характеризует только какую-то неопределенную часть факторного пространства, о которой могут быть лишь качественные суждения, а чаще всего и ошибочные.
Поэтому независимо ни от чего попытка разработки изоморфной модели уже ведет к получению дополнительной информации для создания более эффективных систем или для четкого определения области применения созданной системы распознавания.
Отказ от этого подхода приводит к тому, что легко реализуемые экспериментальные применения системы часто не позволяют объяснить причины неожиданно появляющихся отрицательных результатов. И только более полный анализ поведения объектов (явлений, процессов) распознавания, измерителей их характеристик и сопутствующих искажений (что входит в задачи создания соответствующих моделей) выводит из тупиковой ситуации, если, конечно, она расценена как тупиковая.
Решение задач построения компьютерных моделей систем распознавания образов основывается на
-понимании принципов классификации и структуры систем распознавания;
-способов описания классов на языке словаря признаков;
-подходов к формализации показателей эффективности распознавания.
Начиная с декомпозиции, как одного из важнейших принципов построения моделей, можно заметить, что блочный состав моделей систем распознавания грубо уже определяют их схемы, рассмотренные при изучении принципов классификации. Поэтому модель СР первого приближения должна включать следующие основные элементы:
-распознаваемый объект (явление, процесс);
-технические средства (средства измерений);
-многоуровневая (в общем случае) система обработки измерений;
-алгоритм классификации.
Ну, а так как моделирование систем распознавания, как это было сформулировано выше, преследует целью проведение испытаний и получение оценки выполнения ими задач - эффективности -, то последним венчающим модель элементом в перечисленный состав должен быть включен блок оценки этого показателя (эффективности).
Рассмотрим более подробно все перечисленные элементы модели, стремясь к их детализации и определению принципов компьютерной реализации во взаимодействии друг с другом.
5.5.1. Моделирование распознаваемого объекта
Сложность модели распознаваемого объекта (явления, процесса) определяется полностью степенью физико-химической сложности его самого, условий его наблюдения и степенью доступности необходимых измерений.
Исходя из определения назначения системы распознавания ,- получение информации, необходимой для принятия решения о принадлежности неизвестного объекта (явления, процесса) к тому или иному классу ,- ничего другого не остается, как получить по возможности всю информацию, имеющую отношение к его распознаванию. Незнание или плохое знание описания объекта во всем диапазоне интересующих сторон, свойств, характеристик, факторов поведения не дает оснований надеяться на эффективность получаемых решений.
Заметим, что соответствующая задача (получение всей информации) не противоречит самой первой задаче, с которой начинается создание СР, - определение полного перечня признаков распознавания.
Говоря слова “модель объекта” (а равно “модель явления”, “модель процесса”) условимся, что при этом будем иметь в виду “модель объектов распознавания”, которые могут относиться к различным классам. Но так как в системе в каждом акте ее применения всегда имеют дело с одним неизвестным объектом, подлежащим распознаванию, а также имея в виду, что принципы моделирования всех объектов данной СР одинаковы (различны лишь характеристики), чаще всего используется термин “модель объекта распознавания”.
Исходя из этого определим модель объекта как цифровой имитатор совокупности его свойств, характеристик и состояний. Заметим, что, на первый взгляд, число моделируемых (имитируемых) свойств, характеристик и состояний объекта равно размерности словаря признаков распознавания. Так действительно, если в СР используется один простой признак распознавания, то и моделью соответствующего объекта должно имитироваться поведение этой одной характеристики, одного свойства, одного состояния объекта. Точно также, если СР использует несколько простых признаков, то имитатор объекта должен обеспечивать получение такого же количества характеристик (свойств, состояний) каждого моделируемого объекта. Однако если признак распознавания один, но комбинированный, то цифровой имитатор соответствующего объекта должен выдавать системе столько и таких его характеристик (свойств, состояний), сколько и каких используется для расчета этого комбинированного признака во многоуровневой системе. То есть, размерность вектора имитируемых свойств может быть больше или равна размерности вектора признаков распознавания.
Примеры.
1)Пусть в СР в качестве признака распознавания используется один - масса объекта. Значит моделью каждого из объектов, подлежащих распознаванию, будет в простейшем случае запись в банке данных каждого из них всего одного соответствующего числа в принятой размерности (тонна, килограмм, грамм и т.п.).
2)Пусть в качестве признаков распознавания в СР используются геометрические размеры объекта. Тогда модель каждого объекта, подлежащего распознаванию, будет представлять в простейшем случае три числа в соответствующем банке данных - длина, ширина, высота (м, дм, см, мм).
3)Пусть в СР метеоосадков в качестве признака дождей (а дожди бывают разными хотя бы по интенсивности) используется количество воды, попадающей на определенную поверхность земли. Тогда моделью любого класса дождей может быть всего одно число - количество мм осадков в час (месяц, год).
4)Пусть в СР распознаются звуки по высоте их тона. Тогда моделью каждого звука будет число, характеризующее частоту основного тона его и имеющее размерность - Гц.
5)Пусть в СР распознаются звуки по ряду признаков:
-высота основного тона;
-наличие низкочастотной модуляции основного тона;
-изменение интенсивности.
Тогда модель такого в данном случае сложного явления должна содержать по каждому классу, подлежащему распознаванию, по крайней мере, такие параметры как частота основного тона;
-частота модуляции;
-изменение амплитуды основного тона во времени (вид модуляции).
Чем сложнее свойства объекта, отражаемые в составе вектора признаков распознавания, тем сложнее модель этого объекта. Так, если для распознавания требуется знание геометрических характеристик объекта более полно, чем для определения длины, ширины и высоты, то такой объект должен уже представляться чертежами его в трех проекциях. Соответствующая модель - внешние контуры указанных проекций, представляемые
-либо в виде набора дискретных точек координат;
-либо в виде набора параметров сплайнов, аппроксимирующих указанные контуры;
-либо в виде радиально-круговых разверток указанных контуров, то есть , величин радиус-векторов, имеющих начало в некотором центре чертежа проекции и конец на границе контура.
Так или иначе мы имеем и здесь и в рассмотренных простейших случаях наборы числовых характеристик распознаваемых объектов, которые для каждого из объектов и представляются как его модель.
Утверждая, что чем больше размерность вектора признаков, тем сложнее модель объекта, мы как бы все и усложняем сами вполне сознательно. Действительно формирование словаря признаков, а значит размерности соответствующего вектора, - эвристическая операция. Причем эта задача обычно нацелена на то, чтобы как можно всестороннее охарактеризовать выбранным словарем объект распознавания. Ведь от количества и качества признаков распознавания зависит эффективность классификации. Поэтому получающееся отсюда усложнение модели следует считать естественным состоянием при стремлении к созданию высокоэффективной системы.
Для четкости последующего изложения вопросов построения моделей СР назовем банк данных с числовыми характеристиками распознаваемых объектов, соответствующими признакам распознавания, модулем статических характеристик объектов в составе модели объекта.
Этим модель не исчерпывается.
Следующий важный шаг анализа состава модели объекта (явления, процесса) основывается на представлении о том, как объекты распознавания появляются на входе системы распознавания. Достаточно трудно представить себе системы, на вход которых объекты попадают в строгой очередности. Обычно имеем дело с некоторым вероятностным распределением, то есть, каждый объект или группа достаточно близких объектов, образующих класс, предъявляются СР с конкретной априорной вероятностью.
Изоморфно этому одним из составляющих модель СР модулей должен быть элемент, осуществляющий вероятностный выбор предъявляемого объекта в каждом запуске программы модели распознавания. Таким образом каждый модельный эксперимент по распознаванию при наличии такого модуля должен начинаться со статистической задачи выбора объекта определенного класса, подлежащего в этом эксперименте распознаванию.
Логико-математические принципы построения модуля выбора объекта - это принципы генерации случайных событий методом статистических испытаний (Монте-Карло). При этом, если каждый класс, для которого определена априорная вероятность, представляется одним объектом, то имеем дело с одним датчиком случайных событий (появлений объектов на входе СР). Если же каждый класс содержит несколько однотипных объектов, то соответственно модуль должен иметь и второй датчик случайных событий, заключающихся в появлении на входе системы одного конкретного объекта из набора их (полной группы событий), входящих в имитируемый класс.
В итоге для наиболее общего случая функциональная схема рассмотренной части модели объекта имеет следующее строение (Рис.5.5.1).
Рассмотренная часть модели распознаваемого объекта является достаточной, если мы имеем дело с объектами, явлениями или процессами в статике или если располагаем наблюдениями их для измерения характеристик в фиксированные моменты времени.
Однако чаще всего реальные СР имеют дело с объектами, характеризующимися некоторой кинематикой.
Например, нами рассматривалась такие характеристики звука как высота и громкость, соответствующие признаки которых - частота и амплитуда. В представленном на схеме модуле статических характеристик указанные параметры были бы записаны в виде двух чисел по каждому классу.
Но звук одного тона - это периодический во времени процесс, кинематическая характеристика которого
где A - амплитуда; f - частота.
Здесь получить интересующие признаки (частоту и амплитуду) по одному мгновенному значению не представляется возможным. Они могут быть определены только путем наблюдений и обработки процесса X(t). А если это так, то в соответствующую модель необходимо ввести модуль, который обеспечивает получение X(t), а значит
-счет времени от некоторого момента начала наблюдений или обработки t0;
-расчет кинематики X(t) по приведенной выше зависимости, в
Модуль выбора класса
в соответствии с ап-
риорными вероятнос-
тями появления P(Wi)
№ класса
Модуль выбора объек-
та заданного класса
из соответствующего
набора
№ класса ( i )
№ объекта
М о д у л ь с т а т и ч е с к и х х а р - к о б ъ е к о в
С
татические Статические Статические
õàðàêòåðèñòèêè õàðàêòåðèñòèêè ... õàðàêòåðèñòèêè
объектов 1-го объектов 2-го объектов m-го
класса класса класса
Статические характеристики объекта i-го класса
Рис.5.5.1
Функциональная схема чсти модели объекта
которую и входят статические характеристики - амплитуда и частота.
Здесь счетчик времени - независимая от физического содержания задачи функция
где Dt - принятая в модели дискретность представления исходных сигналов;
k - число тактов моделирования кинематики.
Сам же расчет кинематики определяется объектом и его свойствами.
Рассмотрим еще один пример.
Пусть объект распознавания описан плоским изображением, контур которого в модуле статических характеристик представлен в виде таблицы расстояний от центра тяжести этого изображения с помощью радиально-круговой развертки:
или при выбранной дискретности развертки Dj развертки
Если реально объект распознавания является вращающимся вокруг центра масс с угловой скоростью jv , а система распознавания должна получать соответствующие признаки путем обработки измеренных радиальных размеров объекта, то модель объекта должна содержать модуль кинематики. При этом определение исходного радиального размера объекта во времени должно осуществляться путем, по крайней мере, линейного интерполирования значений таблицы статических характеристик. С учетом дискретной во времени имитации радиального размера будем иметь:
Если вместо статического описания радиально-круговой разверткой тот же плоский объект описан координатами точек контура в прямоугольной системе x,y. Тогда кинематика его при вращении относительно центра масс:
где Xio ,Yio - координаты i-ой точки статического описания объекта;
Xi(t),Yi(t)- координаты i-ой точки в процессе вращения объекта.
Применив указанное преобразование ко всем точкам описания объекта, получим его положение в каждый интересующий момент времени в виде соответствующих положений всех описывающих точек.
Точно также, как и в предыдущем случае, при дискретном счете времени от некоторого момента t0 будем иметь:
Если же при вращении центр нашей фигуры будет совершать некоторое поступательное движение, то для координат точек ее контура будут:
Осуществляя указанные расчеты по статической таблице координат точек контура, будем получать в последовательные моменты времени с дискретностью Dt полное представление о движении рассматриваемого объекта. Это и является практическим решением задачи его моделирования при геометрическом описании.
Рассмотрение приведенных примеров показывает, что более сложные физические описания статики распознаваемых объектов (явлений, процессов) приведут к более сложным выражениям для определения их кинематики.
На этом рассмотрение основ построения модели распознаваемого объекта может быть закончено. Типичная функциональная схема его может быть представлена теперь следующим образом (Рис.5.5.2.).
В заключение отметим, что счетчик времени, введенный необходимостью моделирования кинематики объекта, задает темп работы
Модуль выбора класса в соответствии с апри-
орными вероятностями появления P(Wi)
№ класса
Модуль выбора объекта заданного класса
из соответствующего набора
№ класса (i)
№ объекта
М о д у л ь с т а т и ч е с к и х х - к о б ъ е к о в
Статические характеристики
объекта i-го класса
М о д у л ь к и н е м а т и ч е с к и х х а р - к
Субмодуль Субмодуль Субмодуль
счетчика вре- счетчика вре- счетчика време-
мени функцио- мени функцио- ни функцио-
нирования ¹1 нирования ¹2 нирования ¹m
Субмодуль рас- Субмодуль рас- Cубмодуль рас-
чета кинемати- чета кинемати- чета кинемати-
ческих харак- ческих харак- ческих харак-
теристик объ- теристик объ- теристик объ-
екта 1-го кл. екта 2-го кл. екта m-го кл.
Кинематические характеристики объекта
Рис. 5.5.2.
Функциональная схема модели объекта
всей модели системы распознавания. Через время Dt на выходе модели объекта появляются новые данные о нем. При этом отсчет времени начинается с момента запуска модели. Сам же счет при синхронизации от ЭВМ обеспечивает работу модели, как говорят, “в реальном времени”. Если же такая синхронизация отсутствует, то очередной такт моделирования объекта начинается после выполнения всех программ модели до конца. В этом случае масштаб времени может быть замедленным относительно реального или ускоренным. Все зависит от объема вычислительных операций всей модели СР.
Л Е К Ц И Я 5.6.
Ìîäåëü ñèñòåìû ðàñïîçíàâàíèÿ îáðàçîâ
(продолжение)
5.6.1. Ìîäåëèðîâàíèå ñðåäñòâ îïðåäåëåíèÿ õàðàêòåðèñòèê îáúåêòîâ ðàñïîçíàâàíèÿ
Модель измерителей, обеспечивающих определение характеристик для решения задачи распознавания, является логическим продолжением модели объекта , а значит очередным элементом, в составе общей модели системы. Как следует из предыдущих разделов курса сами измерители являются наиболее сложной и, как следствие, дорогостоящей частью системы. Отсюда вполне понятно, что эта сложность отражается и на рассматриваемой модели. Чаще всего причина сложности модели заключается в том, что в составе систем распознавания используются дистанционные измерители, реализующие достаточно сложные по техническому осуществлению физические принципы с вытекающими отсюда последствиями их математического описания. Кроме того, работа измерителей сопровождается ошибками измерений и отказами, что в свою очередь обусловливает усложнение физико-математического описания и алгоритм.
Для того, чтобы выделить принципы построения моделей средств определения характеристик объектов распознавания, прежде всего обратимся к примерам.
Начнем с такого простого случай как распознавание звуков по их высоте. Тогда на выходе модели объекта, а значит на входе модели измерителей, мы имеем дело с дискретным процессом
Естественно потребовать от измерителя определение частоты как параметра распознавания. Тогда задачами такого измерителя, состоящего очевидно из микрофона и усилителя должны быть:
-прием и усиление этого звукового сигнала;
-определение периода принятого гармонического сигнала и по нему частоты.
Последняя задача может выглядеть как рекуррентное сопоставление каждого принятого дискретного значения с предыдущим и обнаружение номера дискрета, когда достигается максимум сигнала. На некотором временном интервале в результате такой обработки будет получено s таких значений: kmax1 , kmax2 , ....., kmaxs. Тогда интересующая частота тона определится как
Но оказывается, что при моделировании этим нельзя ограничиться, так как реальный сигнал искажается шумами измерительного тракта и ошибками измерителя амплитуды . При этом
где h(kDt) - нормальный случайный процесс с нулевым математическим ожиданием и дисперсией Dx. При этом дисперсия является паспортной характеристикой применяемого измерителя частоты тона звукового сигнала.
Случайная аддитивная составляющая сигнала, входящая в это выражение и обусловливает ошибки определения номеров тактов достижения максимумов сигналом, а значит и ошибку определения частоты. Определить величину, вернее параметры, этой ошибки можно, проведя теоретический вывод зависимости
пользуясь рассмотренной связью между частотой и максимумами сигнала. Этого же можно достичь и численно, пользуясь методом статистических испытаний (Монте-Карло). Для реализации его придется очевидно генерацию нормальной случайной последовательности h(kDt) с Mx = 0 и дисперсией Dx. Добавляя соответствующее значение последовательности к периодической части сигнала и определяя по приведенному алгоритму значения fi, после набора достаточного статистического материала (q реализаций) получим
Точно так может быть определена и плотность распределения вероятностей интересующих нас ошибок измерений.
Заметим, что с точки зрения построения всей модели измерителя получение параметров ошибок измерения частоты (Mf, sf 2 ) или плотности распределения вероятностей в рамках модели самого измерителя не является необходимым. Рассмотренную операцию можно провести отдельно. Выполняется это, как мы упомянули и показали, либо аналитически, либо с использованием метода Монте-Карло. Причем компьютерные реализации и того и другого подходов представляют собой частные модели ошибок. А результаты их работы дают возможность включить в модель измерителя частоты упрощенный субблок ошибок. Последний будет представлять собой всего лишь датчик случайных чисел , построенный на основе реализации плотности распределения вероятностей ошибок определения частоты или нормальной аппроксимации плотности с числовыми характеристиками, определенными на упомянутых частных моделях .
В качестве второго примера, помогающего нам выяснить принципы построения модели распознавания, рассмотрим измеритель радиального размера такого объекта как вращающийся вокруг своего центра тяжести прямоугольник.
Для простоты и наглядности будем считать, что точка, из которой ведутся наблюдения этого прямоугольника и измеряется его текущий радиальный размер лежит в начале координат (0,0). При этом радиальным размером объекта считается величина
где Ri max(kDt), Ri min(kDt) - расстояния до наиболее удаленной и ближайшей к точке стояния измерителя точек контура прямоугольника (пересечения с радиус-вектором наблюдения).
Из простых алгебраических соображений, решая уравнения по определению точек пересечения прямых, отрезки которых образуют стороны прямоугольника, с прямой радиус-вектора из начала координат, для каждого положения прямоугольника будем иметь соответствующие значения. А как изменяются во времени координаты точек контура прямоугольника в модели объекта, а значит и уравнения отрезков сторон его, мы уже рассмотрели. Понятно, что изложенные принципы позволяют записать строго все математические выражения, составляющие существо такого измерителя и легко программно реализовать при построении модели.
По аналогии с предыдущим примером можно считать, что паспортной характеристикой измерителя радиального размера должна быть либо плотность распределения вероятностей ошибок определения ri или числовые характеристики нормального закона, имеющего место как правило при измерениях. И так же, как и в предыдущем примере, модель измерителя радиального размера должна включать модуль датчика случайных чисел, генерирующего аддитивную добавку к ri - dri в соответствии с указанными данными. То есть, измеренное в каждом такте работы программы модели значение радиального размера должно иметь случайную добавку
Следует еще раз подчеркнуть, что плотность распределения этой добавки, как случайной величины, должна соответствовать заданной в паспорте для данного измерителя или полученной для него экспериментально в процессе его испытаний.
Таким образом, уже два рассмотренных примера однозначно демонстрируют, что составными частями модели измерителей характеристик объектов распознавания должны быть:
-модули каждого из средств, отличающихся по физическим принципам, алгоритмы измерений которых имеют свое специфическое математическое описание;
-модули датчиков случайных чисел, реализующие случайные добавки к измерениям каждого средства в соответствии с заданными плотностями распределения вероятностей ошибок.
В то же время эти примеры, позволившие сформировать первые представления о модели средств измерений, не достаточно подчеркнули факт того, что измерители чаще всего определяют интересующие характеристики объекта на некотором временном интервале наблюдения, то есть по совокупности сигналов, а не в точке.
Уже в первом примере измерителя частот гармонических сигналов нельзя было обойтись без накопления информации: частота определялась по результатам наблюдения нескольких периодов сигнала X(t).
Точно также во втором примере (вращающийся прямоугольник) скорее всего для решения распознавательных задач мгновенными замерами радиальных размеров ограничиться нельзя. Требования классификации могут заставить нас здесь либо опять-таки измерять период вращения, либо пользоваться в этих целях такими характеристиками как математическое ожидание и среднеквадратический разброс радиального размера объекта:
Таким образом, рассмотренные примеры реализации измерителей параметров объекта, а значит и признаков их распознавания, заставляют считать обязательным наличие в составе модели измерителя модуля накопления информации об объекте на некотором интервале времени. Длительность его будет естественно определяться необходимой точностью получаемых оценок, а также зависит от
-типа измерителя, его возможностей обнаружения и устойчивого измерения соответствующего параметра;
-допустимого временного баланса на решение задачи распознавания.
Так радиолокатор начнет измерения радиолокационных характеристик воздушного или космического объекта только после того, как этот объект приблизиться настолько, что соответствующий отраженный сигнал превысит уровень собственных шумов приемного устройства этого радиолокатора.
Датчик температуры начнет ее измерения после достижения ею порога чувствительности его.
Рассмотрев указанные примеры, мы все-таки не охватили другие важные стороны измерителей, на которые должно быть обращено внимание при построении модели. К ним относиться надежность.
Если измеритель вышел из строя или его отказ привел к снижению точности определения параметра распознавания, то ясно, что это приведет к падению эффективности классификации объектов. Следовательно, при моделировании такие ситуации должны быть предусмотрены, а выполнить это достаточно просто, если мы располагаем, например, вероятностью безотказной работы соответствующего средства как паспортной характеристикой. В соответствии с рассмотренным нами методом моделирования случайных событий (метод Монте-Карло) достаточно организовать датчик таких случайных событий как отказ и при выполнении условий выхода из строя запрещать модели измерителя выдавать на выход данные по распознаваемому объекту. Если же отказ приводит только к снижению точности, то в задачи такого модуля должно входить соответствующее изменение характеристик измеренных параметров по сравнению с паспортными.
Проведенное рассмотрение типового состава модели измерителя дает основания считать, что реальные объекты, явления, процессы, подлежащие распознаванию, а соответственно и измерители их характеристик, могут обладать широким спектром особенностей. Именно они отражаются на принципах построения модели измерителя. Поэтому реально рассматриваемые модели могут быть и значительно проще и существенно сложнее. Однако изложенные принципы дают основы методологии, базирующейся на тщательном анализе объектов, явлений, процессов и задач измерения их характеристик, а поэтому позволяют надеяться на учет указанной простоты или сложности при реализации и обеспечении изоморфного представления моделей измерителей.
5.6.2. Моделирование каналов связи
Немаловажную роль в определении характеристик распознаваемых объектов играют каналы связи. И говоря о том, что главная цель СР - получение информации для решения задач распознавания, указанные каналы можно считать конструктивно присущими таким системам.
В качестве каналов связи могут рассматриваться:
-каналы передачи и приема энергии измерителями, осуществляющими дистанционное измерение характеристик объектов;
-каналы передачи информации измерителя на устройства, осуществляющие ее обработку и использование.
Так, если речь идет об измерителях радиолокационного типа, то здесь каналом названного первого типа является земная атмосфера. Она обладает частотно-избирательными свойствами, пропуская почти без потерь одни волны и задерживая другие. Ослабление и поглощение при этом носит экспоненциальный характер и зависит от протяженности трассы распространения сигналов от радиолокатора до наблюдаемого объекта. Поэтому при достаточно коротких трассах этим ослаблением можно пренебречь. В противном случае любые ослабления сигналов ведут как к снижению дальности наблюдения интересующего объекта, так и к ухудшению точности сопутствующих измерений.
Ионосфера Земли является анизотропной средой, обладающей различными значениями показателя преломления для различных длин волн. В итоге - изменение поляризации, а значит ослабление принимаемого сигнала.
Слоистость атмосферы - причина систематических ошибок измерения угловых координат, дальности и скорости объекта.
Местные неоднородности атмосферы, обусловленные вихревыми процессами в воздухе, - причина случайных ошибок измерений.
Для ультразвукового локатора, используемого в медицинской аппаратуре УЗИ, слоистость и местные неоднородности тканей человека, частотная зависимость их коэффициента пропускания приводят:
-к затуханию сигнала;
-к поглощению сигнала;
-к рассеянию сигналов;
-к интерференции ультразвуковых колебаний.
Если первые три вызывают неоднородное ослабление отраженного сигнала, несущего информацию о состоянии внутреннего органа человека, то последнее приводят к появлению спекл - шума, затрудняющего наблюдения распознаваемых объектов и являющегося результатом дифракции отраженных от различных неоднородностей сигналов.
Характерно то, что в большинстве случаев исследованию рассматриваемых каналов связи посвящены многочисленные теоретические и экспериментальные работы. При этом достаточно часто указанные воздействия на распространение сигналов измерителей хорошо описываются математически. Для них существуют или теоретические зависимости или в худшем случае эмпирические соотношения, хорошо себя зарекомендовавшие. В каждом конкретном случае канала связи и измерителя эти зависимости и соотношения наполняются своим специфическим содержанием.
Главный вывод из этого рассмотрения - возможность учета искажений информационных сигналов в разрабатываемой модели системы распознавания.
Второй из упомянутых типов каналов передачи информации измерителей - это в большинстве случаев каналы ее ввода в ЭВМ. Здесь главным является, если не учитывать дальность передачи и соответствующее ослабление сигналов, преобразование измеренного значения , представленного в виде тока или напряжения в цифровую форму.
Такое преобразование может осуществляться как стандартными средствами ЭВМ, так и в самом измерителе параметров объектов распознавания.
Речь же о важности выяснения существа указанного преобразования идет потому, что дискретизация всегда вносит ошибки в передаваемый параметр и должна учитываться при моделировании.
Здесь математическое описание достаточно строго и исходит их того, что плотность распределения вероятностей ошибок дискретизации - равномерная с нулевым математическим ожиданием и дисперсией
где D - цена младшего разряда преобразования.
Таким образом, рассмотрение показало, что каналы связи, осуществляющие передачу информации зависят главным образом от типа измерителя. Поэтому их включение в модель измерителя в качестве специальных модулей не должно вызывать сомнений.
В итоге типовая функциональная схема модели измерителя может быть представлена следующим образом (Рис.5.6.1).
Динамические характеристики объекта
Модель 1-го измери- Модель 2-го измери-
теля теля
Модуль имитации Модуль имитации
отказов измери- отказов измери- ....
теля теля
Модуль имитации Модуль имитации
начала и продол- начала и продол-
жительности из- жительности из- ....
мерений мерений
Модуль оценки Модуль оценки ....
параметров параметров
Модуль имитации Модуль имитации
аппаратурных аппаратурных ....
ошибок ошибок
Модуль имитации Модуль имитации
ошибок канала ошибок канала ....
связи связи
Модуль имитации Модуль имитации
преобразования преобразования ....
параметра в циф- параметра в циф-
ровой код ровой код
Рис.5.6.1. Модель средств измерения характеристик
Л Е К Ц И Я 5.7.
Моделирование алгоритма распознавания
5.7.1. Модель алгоритма распознавания
объектов (явлений, процессов)
О модели алгоритма распознавания следует вести речь в следующих случаях:
1)При программной реализации соответствующего алгоритма не на рабочей ЭВМ, а на ЭВМ, предназначенной только для предварительной его отработки.
2)При отличиях языка программирования модели от языка программирования рабочего алгоритма.
3)При отработке в процессе моделирования принципов построения алгоритма и, в частности, алфавита классов и словаря признаков, а также решающего правила.
4)При различных сочетаниях ситуаций, представленных в пп. 1-3 настоящего перечня.
Если алгоритм системы распознавания реализуется на “своей” ЭВМ в эксплуатационном представлении, то он уже в силу полной изоморфности и аналогичности не представляет собой модель, а является реальной составной частью системы или ее модели (если идет речь о модели системы). В этом случае функциональная схема алгоритма ничем не отличается от схем, приведенных при изучении вопросов их классификации.
Реализация алгоритма распознавания на “своей” ЭВМ совместно с моделью объекта распознавания и средств измерения характеристик представляет собой комбинированную модель СР (реальный программно реализованный алгоритм СР и модели входных воздействий), предназначаемую для оценок:
-правильности функционирования алгоритма СР;
-эффективности системы распознавания, имеющей выбранную структуру и реализацию.
Первая из рассмотренных ситуаций применения моделирования систем распознавания может иметь достаточно широкий спектр задач в процессе создания алгоритма и его отработки, если отсутствуют экономически допустимая возможность его реализации на рабочей ЭВМ или ЭВМ подобного типа.
Точно также существуют условия для возникновения второй ситуации.
Например, желание приспособить готовую программно реализованную СР для другой системы на ЭВМ, где в соответствии с имеющимися требованиями программирование ведется на другом языке или на автокоде, заставляет рассматривать существующую реализацию как модель.
Третья ситуация применения моделей систем распознавания представляется наиболее соответствующей конструирования систем распознавания. В том случае, когда целью моделирования алгоритма является выбор признаков распознавания и алфавита классов, состав модели оказывается наиболее полным по сравнению с другими и поэтому представляющим наибольший интерес.
Главное что отличает такую модель - это наличие модуля описания классов на языке признаков. Забегая вперед, можно заметить, что подобный модуль может быть и принадлежностью рабочего алгоритма СР. Наиболее это очевидно для обучающихся систем распознавания.
Алгоритм функционирования модуля описания классов на языке признаков в максимальной степени интересен для вероятностных систем распознавания. Другие системы имеют более простую и очевидную реализацию.
На начальной стадии модельной отработки вероятностной СР имеем дело с m классами и N признаками распознавания .В дальнейшем их число может быть изменено. Для этого и проводится моделирование.
Òîãäà, êàê èçâåñòíî, îïèñàíèå êàæäîãî èç êëàññîâ ïðåäñòàâëÿåòñÿ òàê:
_
Класс 1 : f(X/W1) и P(W1)
_
Класс 2 : f(X/W2) и P(W2)
_
Класс 3 : f(X/W3) и P(W3)
..............................
_
Класс m : f(X/Wm) и P(Wm)
При независимости всех N признаков обычно имеем:
_ _ _ _
f(X/W1) = f(X1/W1)*f(X2/W1)*....*f(XN/W1)
_ _ _ _
f(X/W2) = f(X1/W2)*f(X2/W2)*....*f(XN/W2)
.......................................
_ _ _ _
f(X/Wm) = f(X1/Wm)*f(X2/Wm)*....*f(XN/Wm)
К ак видим, исходными данными для описания классов N признаками являются в этом случае частные описания каждого из классов по каждому признаку
f(Xj/Wi), где j = 1,N
Отсюда понятно, что если j-ый признак распознавания имитируется в модели объекта ( а у нас такая имитации будет предусмотрена), то при достаточном количестве запусков модели (числе испытаний) получим в каждом заранее известном классе ряд измерений
{Xjk} k = 1, Nисп
Отсюда статистической обработкой может быть получена сначала гистограмма плотности распределения вероятностей
f(Xj/Wi)
Затем аппроксимация этой плотности теоретическим непрерывным распределением (например нормальным) дает требуемое частное описание i-го класса по данному j-му признаку. Точно также получаются частные описания всех классов по каждому из признаков. Они и обеспечивают при указанной независимости признаков начальное описание всех классов.
Таким образом, отсюда понятно, что в составе модуля описания классов модели СР должен находиться субмодуль восстановления плотностей распределения вероятностей признаков в каждом из назначенных классов, реализующий рассмотренный алгоритм.
Обратим теперь внимание на то, что число классов и число признаков в соответствии с имеющимися представлениями о создании СР в исходном состоянии должно быть максимально возможным. Число классов - так как всегда есть стремление к максимальной детализации решений. Число признаков - так как их максимуму соответствует максимум вероятности правильной классификации.
В соответствии с этим модель СР может быть использована для оценки результативности увеличения числа признаков, введения новых. Здесь без дополнения ее путем доработок не обойтись. Ну, а все последующие шаги оптимизации СР, обеспечивающей максимум вероятности правильной классификации, связываются, во-первых, с выбором такого числа признаков, которое удовлетворяло бы имеющимся ограничениям на создание средств измерений и обработки информации. Таким образом, здесь уже имеем дело с противоположной тенденцией - ограничением числа признаков (исключением менее эффективных), но при стремлении сохранить достигнутую эффективность на полном их наборе.
Следовательно, во-вторых, в задачи оптимизации должны входить действия по компенсация потерь от уменьшения числа признаков, которые сопровождаются, как мы уже доказали, только уменьшением числа классов в исходном алфавите.
В результате сокращения числа признаков сокращенное описание будет иметь вид:
где k - число исключенных признаков распознавания из i-го класса
i = 1,(m-l)
l - число исключенных классов.
Причем здесь предполагается, что после отбора в состав вектора признаков тех, которые удовлетворяют предъявленным ограничениям, производится повторное описание классов .
Когда же есть необходимость уменьшить число классов, то исключаемые из алфавита классы вынужденно объединяются с теми оставшимися в его составе, для которых такое объединение не принесет увеличения числа ошибочных решений в системе. Тогда при объединении, например, двух классов (p-го и q-го) и тот и другой исчезают из алфавита и появляется один новый (m+1)-ый с описанием:
Естественно, что тогда (после исключения) последней алгоритмической функцией в модуле описания классов должна быть функция их перенумерации в новом составе.
Таким образом, последовательность алгоритмических действий модуля описания классов включает:
1)Расчет одномерных плотностей распределения вероятностей каждого из признаков по классам по репрезентативной выборке реализаций измеренных значений (при моделировании объектов и измерителей).
2)Исключение из описаний одномерных плотностей распределения при сокращении размерности вектора признаков.
3)Перекомпоновка плотностей описания классов и априорных вероятностей при сокращении числа классов.
4)Перенумерации классов после объединения отдельных.
Учитывая тот факт, что при имеющихся ограничениях на создание средств измерений и (или) средств обработки приходится варьировать наборами признаков, рассмотренный модуль описания классов должен повторять функции 2-го пункта при каждом новом наборе.
Наличие рассмотренного модуля в составе модели СР предъявляет определенные требования к его окружению. Во-первых, для каждого нового описания классов необходимо в качестве входной информации модуля иметь используемый в данной серии испытаний вектор отбора признаков. При решении задачи объединения классов в качестве входной информации модуля необходимо иметь решение в виде номеров классов, назначенных к объединению. В соответствии с этим модуль обеспечивает:
-повторное описание классов при каждом новом векторе отбора;
-описание объединенных классов после испытаний системы распознавания для одного состава алфавита (перекомпоновка векторов-признаков при их независимости).
Если первая из приведенных задач решается автоматически исключением признаков, то вторая не может быть решена без оценки эффективности СР в данной серии испытаний. То есть, решается после проведения испытаний с данным вариантом алфавита во всем диапазоне допустимых векторов отбора признаков распознавания.
5.7.2. Модуль оценки эффективности системы распознавания
Оценка эффективности СР, как это следует из самого понятия “эффективность”, представляется необходимым элементом модели СР в целом, позволяющим ответить на вопрос, каково качество или созданной системы или системы после ее очередных доработок (изменений алфавита классов и словаря признаков распознавания), осуществляемых в процессе оптимизации.
В том случае, когда решение системы зависит от многих факторов, имеющих случайный характер, показателями, характеризующими оптимальность, являются вероятности правильных и ошибочных решений. Отсюда целесообразным для конструкции модели оценки эффективности должен быть субмодуль оценки вероятностей решений системы.
К основным данным для формализации такого субмодуля относятся исходы модельных испытаний. Они представляют собой решения о принадлежности при известной принадлежности классифицируемого объекта в каждом испытании.
Поэтому работа алгоритма субмодуля в рассматриваемой части заключается в фиксации решений и истиной принадлежности объекта в некоторой матрице решений:
где nij/Vk - число отнесений объекта j-го класса (известного при организации моделирования) к классу i.
Число таких матриц после испытаний СР для каждого вектора отбора Vk равно числу таких векторов, удовлетворяющих ограничениям средств на создание или использование систем измерений признаков распознавания. Если же имеем дело с оценкой конкретной структуры системы распознавания, то естественно будем иметь всего одну матрицу для заданного конкретного набора признаков распознавания.
В любом случае эти матрицы легко преобразуются в матрицы вероятностей соответствующих решений (точнее, частот, сходящихся к вероятности с заданной точностью при специально выбранном количестве модельных испытаний).Тогда для алфавита классов Ar имеем:
Эта простота конечной оценки показателей функционирования системы как раз и является характерной особенностью метода статистических испытаний (метода Монте-Карло).
Отсюда может быть получена вероятность правильных системных решений в целом (то есть, отнесений ко всем классам алфавита):
На этом при оценке эффективности СР с конкретной детерминированной структурой моделирование завершается и рассмотренным субмодулем ограничивается структура модуля оценки эффективности.
Если же существует необходимость оптимизации, то возникает необходимость дополнения модели оценки эффективности субмодулем выбора оптимального набора признаков распознавания. . Его алгоритм очевиден:
_
То есть, g-ый вектор отбора (Vg) обеспечивает максимальную вероятность правильных системных решений в алфавите Ar.
Теперь матрица вероятностей соответсвует любым системным решениям для найденного оптимального набора признаков распознавания. В результате появляется возможность определить в данном алфавите класс g, объекты которого классифицируются в максимальной степени ошибочно.
Соответствующую вероятность находим как максимальную вероятность ошибки:
откуда номер упомянутого класса:
Если теперь задаться порогом вероятности P( g)зад, то появляется возможность при P( g/Ar) > P( g)зад принять решение о необходимости исключения из алфавита Ar класса с номером g , эффективность отнесения к которому ниже требуемой (заданной).
Отсюда все операции, связанные с определение такого класса (номера его через вероятность ошибочного отнесения), могут быть объединены в отдельном субмодулем- поиска класса, снижающего эффективность распознавания.
Наконец, та же матрица
позволяет выделить такой класс, отнесение к которому объектов найденного низкоэффективного класса наиболее целесообразно для повышения эффективности системных решений. Номер такого класса соответствует максимальной вероятности отнесения к нему указанного низкоэффективного класса. То есть:
Эти операции можно поручить отдельному субмодулю, выходом которого должны быть номера классов g и h , которые следует объединить в алфавите Ar, чтобы повысить эффективность СР в целом. Он может быть назван субмодулем определения номеров объединяемых классов.
 ðàññìàòðèâàåìîì ñîñòàâå (Ðèñ.5.7.1.) ìîäóëü îöåíêè ýôôåêòèâíîñòè óäîâëåòâîðÿåò ïîòðåáíîñòÿì êàê îöåíêè êà÷åñòâà ÑÐ, òàê è ïîòðåáíîñòÿì óïðàâëåíèÿ îïòèìèçàöèåé ÑÐ â óñëîâèÿõ îãðàíè÷åíèé ñðåäñòâ íà ñîçäàíèå èçìåðèòåëåé.
Ñàìè ôóíêöèè óïðàâëåíèÿ ìîäåëüþ ÑÐ íåîáõîäèìî îáúåäèíèòü â îòäåëüíîì ìîäóëå.
№ распознанного класса
Субмодуль оценки № имитируемого
результата распо- класса
знавания (от модели объекта)
A r i,j
-
Субмодуль расчета _
от модуля матрицы решений Vk
управления (от модуля управления)
|| nij/V k ||
Субмодуль расчета
и хранения матриц
на модуль вероятностей ре-
управления шений
|| Pij (Ar /Vk ) ||
Субмодуль опреде-
ления оптимально-
на модуль го набора призна-
управления ков в алфавите Ar
gAr
Субмодуль поиска
неэффективно рас-
на модуль познаваемого
управления класса
è ìîäóëü P( g/Ar) è g/Ar
îïèñàíèÿ
êëàññîâ Ñóáìîäóëü ðåøåíèÿ Ñóáìîäóëü îïðåäå-
об исключении g-го ления расширяемо-
класса го класса (h )
Рис.5.7.1. Модуль оценки эффективности
5.7.3. Модуль управления моделью системы распознавания
Из рассмотрения общих принципов моделирования сложных систем, а также состава и особенностей построения модели СР следует, что в общих чертах динамика моделирования системы распознавания представляет собой
-многократно повторяющийся ( с каждым пуском программы модели) процесс выбора распознаваемого объекта;
-многократно повторяющийся процесс имитации работы измерителей параметров по каждому моделируемому объекту и штатной обработки полученной информации с целью получения признаков распознавания;
-многократно повторяющийся ( для каждого выбранного объекта распознавания) процесс штатного принятия решения о принадлежности предъявленного объекта;
-статистическую обработку принятых решений в каждом из пусков программы модели как источник определения показателя качества СР в целом.
Первая из приведенных функций, задающая весь процесс функционирования программы модели в каждом пуске, реализуется в виде:
-первоначального пуска программы модели испытателем с исходными требованиями, введенными им предварительно;
-автоматического повторения заданного числа циклов пуска программы для реализации повторений процесса распознавания в соответствии с методологией статистических испытаний;
-своевременной выдачи необходимых исходных данных для ввода в отдельные субмодули модели для организации их работы по заранее введенным и хранимым данным или по результатам выполненной работы другими субмодулями.
Все остальные функции, характеризующие динамику модели СР в целом, должны выполняться автоматически в рассмотренной последовательности. То есть, первая функция объединяет фактически все задачи управления моделью. Выполнение ее логично возложить на отдельный модуль - модуль управления. .
Общее рассмотрение реализации модуля управления позволяет обратить внимание на задачу связи испытателя с моделью системы. При этом рассматривая алгоритмическое содержание уже описанных модулей, входящих в состав модели, можно заключить, что модуль управления должен иметь интерфейс, позволяющий вводить для организации моделирования такие исходные данные, как
-количество статистичесих испытаний (пусков) на модели системы;
-исходный априорный алфавит классов;
-априорные вероятности предполагаемых классов;
-допустимое значение вероятности ошибочной классификации.
Кроме того, тот же интерфейс должен обеспечить представление испытателю по его требованию индикации:
-реализаций измеренных характеристик (признаков) моделируемых объектов;
-поэтапных значений (для каждого алфавита классов и набора признаков распознавания) показателя эффективности системы;
-состава алфавита классов и параметров их описания;
-текущего состояния отбора признаков в рабочий словарь.
Теперь можно детализовать отдельные детали управления. Так модуль управления должен обеспечивать
-автоматическое повторение решений полного объема задач испытаний на модели со сменой вектора отбора признаков распознавания (если заданы ограничения на средства создания и использования средств измерений);
-автоматический переход к анализу эффективности всех вариантов рабочего словаря после завершения испытаний со всеми возможными векторами отбора;
-автоматический переход к выполнению корректировки алфавита классов после выполненного анализа ошибок классификациии;
-автоматическое повторение циклов полного объема испытаний после корректировки алфавита классов.
А отсюда логически вытекает, что задание (генерация) векторов отбора, удовлетворяющих заданным ограничениям, вполне соответствует функциям управления. То есть, эта задача должна решаться модулем управления, который обязан иметь соответствующие исходные данные по ограничениям выделенных средств и затратам на создание или применение отдельных измерителей.
Перечисленные функции должны быть алгоритмически дополнены функцией обучения системы на информации об объектах, имитируемой соответствующим модулем модели. Работа в указанном режиме может осуществляться как при первом пуске модели для первоначального описания классов, так и при любой смене алфавита классов и словаря признаков.
Обобщенная структурная схема модуля управления приведена на рис 5.7.2, а общая структурная схема модели СР без детализации рассмотренных модулей и субмодулей - на рис.5.7.3.
От модуля
обработки Субмодуль вывода Субмодуль ввода P(Wi)
характеристик исходных данных Ar
измерений объекта распозна- и управления ото- P(g)з
вания бражением
От модуля Субмодуль отобра- Субмодуль генера- _
жения процесса ции допустимых Vk
оценки эф- моделирования векторов отбора
фективно-
сти и др.
Субмодуль управ-
ления описанием На
классов модуль
описания
классов
Субмодуль управ-
ления циклом ис-
пытаний системы На
модуль
имитации объектов
Субмодуль управ-
ления оценкой эф-
фективности
На модуль
оценки
эффективности
Рис. 5.7.2. Обобщенная структурная схема модуля управления моделью
информация, управление P(g)з
Модуль управления
моделью Ar
Ar
Vk
Модуль имитации
объектов распоз-
навания