CBRR0915 (719125), страница 15
Текст из файла (страница 15)
Модуль измерите-
лей характеристик
объектов
Модуль отбора
признаков распоз-
навания
Ar
Модуль описания Модуль принятия
классов решений о при-
надлежности
h g
Модуль оценки
эффективности
Рис.5.7.3. Общая структурная схема модели СР
Л Е К Ц И Я 5.8
Опытно-теоретический метод в задачах создания систем распознавания
5.8.1. Использование принципов опытно-
теоретического метода при моделировании СР
Назначение опытно-теоретического метода - испытания сложных систем во всем факторном пространстве их функционирования.
Системы распознавания образов являются обычно составной частью сложных технических систем. Поэтому испытания самих сложных систем обеспечивают, как правило, и испытания СР.
Главное, что объединяет информационно системы распознавания и сложные системы, в состав которых они входят, это - объекты распознавания и средства измерений характеристик этих объектов. Причина такого пересечения систем очевидна и состоит в том, что сложные системы обеспечивают принятие решений по определенным объектам (процессам, явлениям), а распознавание этих же объектов (явлений, процессов) всегда направлено на получение дополнительной информации для принятия указанных решений.
Отсюда казалось, что занимаясь системами распознавания, можно было бы не интересоваться опытно-теоретическим методом, отдать его на откуп специалистам-испытателям сложных систем. При этом, если не учитывать неотъемлемое использование в составе СР средств измерений ( а они нужны сложной системе и без задач распознавания), то сама СР не выглядит как сложная.
Однако часто СР разрабатываются либо после создания систем принятия решений, являющихся сложными, либо самостоятельно в расчете на перспективное использование в какой-либо предметной области. То есть, в этих случаях разработчики СР встречаются с тем, что или не располагают изоморфными моделями объектов распознавания и средств измерений (они не были нужны разработчикам сложных систем) или просто лишены этих данных, так как предметная область применения СР еще не определилась. Поэтому и в первом и во втором (после определения предметной области) случаях становится важным для всесторонних оценок характеристик этих систем взгляд с позиций опытно-теоретического метода на упомянутое пересечение систем - объекты распознавания и средства измерения их параметров. Это обращение к опытно- теоретическому методу заставляет разработчиков СР самостоятельно идти по пути создания изоморфных моделей объектов и измерителей. В результате объединение модели СР с упомянутыми моделями уже представляется как сложная система со всеми вытекающими последствиями по ее испытаниям.
Дополнительно к изложенному можно заметить, что в соответствии с приведенными в нашем курсе определением главной задачей СР является получение информации об объекте распознавания. А это как раз и оправдывает объединение программно реализованного алгоритма распознавания с моделями объекта и измерителей при испытаниях системы распознавания.
Само моделирование объектов (явлений, процессов) распознавания почти всегда представляет собой достаточно объемную и сложную задачу. Примером может служить хотя бы разработка модели системы распознавания речевых сообщений. Объект распознавания здесь - это в конечном итоге состояния речевого аппарата человека при производстве колебаний звукового диапазона. Сложность этого аппарата, его динамики не позволяет надеяться на легкое создание безупречной модели. При этом опытно-теоретический метод испытаний остается единственным в достижении высокой достоверности результатов отработки соответствующей СР на модели. А без всесторонних испытаний во всем факторном пространстве применения подобных систем, особенно для принятия решений высокой ответственности, не представляется возможным обойтись. Поэтому здесь создание изоморфных реальному речевому аппарату синтезаторов речи - это одновременно и путь создания эффективных СР.
Можно найти достаточное число примеров из других областей науки и техники, которые подтвердят, что устраняться от использования принципов опытно-теоретического метода при создании СР не только нецелесообразно, но и ошибочно.
Отсюда арсеналом средств разработчика СР при создании моделей объектов и измерителей должны быть следующие принципы опытно-теоретического метода:
1).Построение общей топологии модели СР, включая источники информации, и проведении ее декомпозиции.
2).Распределение задач между моделями и определение состава частных моделей.
3).Выбор и обоснование способов приближения моделей к реальным моделируемым объектам и измерителям их характеристик.
4).Выбор условий проведения и планирование натурных испытаний информационных средств СР.
5).Обоснование объема экспериментов и проведение натурных испытаний информационных средств СР для оценки степени близости моделей и реальных объектов и измерителей.
6).Проведение параметрической и структурной доработок модели информационных средств СР на основе сравнения в одинаковых условиях результатов реальных испытаний и моделирования.
7).Проверка статистической совместимости моделей и соответствующих информационных средств в выбранных точках факторного пространства состояний объектов распознавания и измерителей их характеристик.
8).Проведение испытаний СР на моделях, определение характеристик качества программно реализованных алгоритмов, функционального взаимодействия элементов системы и ее эффективности во всей области факторного пространства.
В целом опытно-теоретический метод подход к испытаниям сложных систем и его принципы основываются на целом ряде теоретических положений, решений и выводов, которые могут быть рассмотрены только в отдельном курсе. Наша задача - показать логическую приемлемость этого подхода к моделированию СР и адресовать будущего разработчика к таким материалам, излагающим соответствующие методы, как
1. Н.П.Бусленко. Теория больших систем. М.,”Наука”, 1969.
2. А.С.Шаракшанэ, И.Г.Железнов и др.
Сложные системы. М.,”Высшая школа”, 1977.
3. Г.И.Бутко,Ю.П.Порывкин и др.
Оценка характеристик систем управления летательными аппаратами. М.,”Машиностроение”, 1984.
5.8.2. Моделирование в задачах создания
и оптимизации систем распознавания
После того, как рассмотрены основные принципы построения моделей сложных систем и их испытаний с использованием моделирования, не сложно понять, на каком этапе создания СР может и должна появляться соответствующая модель.
Если обратиться к задачам создания СР, то первая из них - выбор признаков распознавания заданных объектов (явлений, процессов). То есть, в самом начале разработки СР в распоряжении разработчика находится конкретная, вполне определенная предметная область с ее объектами (явлениями, процессами).
Не вызывает сомнений то, что на рассматриваемом этапе уже возможно создание модели объектов (явлений, процессов), подлежащих распознаванию. В то же время соответствующая разработка оказывается в целом ряде случаев достаточно объемной, так как в самом начале работ в априорный словарь признаков включаются все возможные параметры, характеризующие объект (явление, процесс). А в результате последующего моделирования отдельные характеристики могут оказаться невостребованными в связи с тем, что не найдется соответствующего измерителя их или его создание окажется экономически невозможным.
Поэтому хотя то всестороннее изучение свойств объекта, которое будет в указанном случае проведено, и полезно для представлений возможного развития СР, разработка модели более целесообразной оказывается после анализа и выбора допустимого набора измерительных средств.
Так или иначе построение в выбранном признаковом пространстве модели, изоморфной реальному объекту, представляется достаточно мощным процессом для поиска наиболее эффективных признаков распознавания. Указанный процесс обязывает к глубокому анализу существа распознаваемого объекта.
В результате создания модели объекта появляется возможность очередного шага в построении модели СР в целом - возможность создания и подключения модели средств измерений.
Далее после решения задачи выбора априорного алфавита классов (а это уже следующая задача создания СР) созданный комплекс из двух моделей (объекта и измерителей) позволяет методом статистических испытаний получить описание этих классов. То есть, статистически разыгрывая начальные условия состояния и движения объекта и измерителей его характеристик, получаем статистические данные (плотности распределения вероятностей) по каждому из признаков при их независимости в назначенных классах или совместные описания в более сложных случаях.
Если создается обучающаяся система, то после выбора начальных приближений разделяющих функций классов (а это уже очередной этап создания СР) использование созданных моделей ( объекта и измерителей) обеспечит тем же методом статистических испытаний уточнение параметров указанных разделяющих функций. При этом появляется возможность проверки приемлемости для создаваемой системы различных решающих функций.
Для случая “полной” априорной информации (система без обучения) задача выбора правила классификации также легко решается методом статистических испытаний. Здесь реализуется возможность проверки различных статистических критериев.
Как для обучающейся системы, так и для системы без обучения этап исследования решающих правил уже предполагает, что в состав модели входит модуль оценки эффективности. Без него предусматриваемое сравнение в приведенных случаях невозможно.
Таким образом, на всех этапах (при решении всех задач) создания СР любых типов моделирование оказывается инструментом, избавляющим разработчика от сбора большого объема экспериментальных данных. При этом, конечно, всегда предполагается, что применяемые модели прошли калибровку в рамках опытно-теоретического метода и являются изоморфными реальным аналогам.
В итоге рассмотрения роли и места моделирования в задачах создания систем распознавания образов остается вспомнить, что одно из важнейших направлений разработки - оптимизация эвристических выборов априорного словаря признаков и априорного алфавита классов. Однако в том, что моделирование может обеспечить выбор наиболее эффективных рабочего словаря и рабочего алфавита, уже пришлось убедиться при разработке структурной схемы полной модели СР.
В заключение необходимо обратить внимание на то, что общая структурная схема модели системы распознавания, рассматриваемая для вероятностного описания классов, остается справедливой для детерминированных и логических систем. Конечно внутренняя структура отдельных модулей должна быть подвергнута корректировке. Так в детерминированном случае ошибки измерений становятся несущественными и соответствующий субмодуль можно было бы исключить из модуля измерителя характеристик объекта распознавания. Точно также упрощается модуль описания классов за счет использования набора детерминированных эталонов. Упрощается и модуль классификации. Но в целом вся структура модели остается приспособленной для испытаний детерминированных систем.
Аналогично свои особенности имеет реализация модели логической СР:
-результаты обработки информации измерителей после бинарного квантования должны преобразовываться в логические признаки;
-случайность результатов измерений за счет сопутствующих ошибок трансформируется в реально имеющую место случайность получения того или иного логического признака;
-описание классов выглядит в виде системы булевых функций классов с импликантами в виде произведений логических признаков;
-модуль классификации должен приобрести возможность решения булевых уравнений.
В то же время модуль оценки эффективности в основной своей части должен мало отличаться от модуля вероятностной системы, так как и в этом случае оценки основываются на методе Монте-Карло.
Таким образом, разработанная общая структурная схема модели СР должна играть роль типовой, содержание модулей которой корректируется в зависимости от назначения системы и характеристик признаков распознавания.
Ë À Á Î Ð À Ò Î Ð Í Û Å Ð À Á Î Ò Û
Ï Î Ê Ó Ð Ñ Ó
"Îñíîâû ïîñòðîåíèÿ ñèñòåì
ðàñïîçíàâàíèÿ îáðàçîâ"
Лабораторная работа №1 по курсу “Основы построения систем распознавания образов”
Èññëåäîâàíèå ãåîìåòðè÷åñêèõ ìåð áëèçîñòè ðàñïîçíàâàåìûõ îáúåêòîâ è êëàññîâ
I. Öåëü ðàáîòû
Целью лабораторной работы является практическое освоение методов компьютерной реализации геометрических мер близости, применяемых для принятия решений в детерминированных системах распознавания.
II. Çàäà÷è ëàáîðàòîðíîé ðàáîòû
1. Разработка алгоритма принятия решения в детерминированной системе распознавания на основе использования известных геометрических мер близости.
2. Программная реализация разработанного алгоритма.
3. Ввод заданных описаний 3-х классов на языке 11-и предложенных признаков распознавания (таблицы 1-3 - варианты заданий).
4. Отладка программы.