128079 (718989), страница 3

Файл №718989 128079 (Нормы и интерпретация результатов теста) 3 страница128079 (718989) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Таблица 1

Группы

Средние значе­ния

Резуль­тат раз­носки

Итоги разнос­ки

f•x

x – x

( х -x)2

f •(x -х)2

83—91

87

/

1

87

36

1296

1296

92—100

96

u

3

288

27

729

2187

101—109

105

LJ

3

315

18

324

972

110—118

114

QQ

10

1140

9

81

810

119—127

123

1300/

16

1968

0

0

0

128—136

132

Ш

9

1188

9

81

729

137—145

141

Я

5

705

18

324

1620

146—154

150

L

2

300

27

729

1458

155—163

159

/

1

159

36

1296

1296

n = 50

Σfx= 6150

Σ f•(x -х)2= =10368

1-й столбец — группы, полученные после разбиения изучаемого ряда.

2-й столбец — средние значения каждой группы; этот столбец показывает, в каком диапазоне варьируют величины изучаемого ря­да, т.е. х.

3-й столбец показывает результаты «ручной» разноски величин ряда или иксов: каждая величина занесена в соответствующую ее значению группу в виде черточки.

4-й столбец — это итог подсчета результатов разноски.

5-й столбец показывает, сколько раз встречалась каждая величи­на ряда — это произведение величин второго столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необходимые для вычисления среднего арифметического.

6 -й столбец показывает разность среднего арифметического и значения x по каждой группе.

7-й столбец — квадрат этих разностей.

8-й столбец показывает, сколько раз встречался каждый квадрат разности; суммирование величин этого столбца дает итог, необхо­димый для вычисления среднего квадратического отклонения.

В заголовках 5-го и 8-го столбцов указывается, насколько часто встречается та или другая величина. Частота обозначается буквой f (от английского слова frequency).

Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего арифметического и среднего квадратического отклонения.

Поэтому формулы

вполне тождественны.

Рис.2

Остается показать, как вы­числяются по формулам сред­нее арифметическое и среднее квадратическое отклонение. Обратимся к величинам, полу­ченным в таблице:

x = 6150 : 50 = 123. При составлении таблицы это число было заранее вычислено, без него нельзя было бы полу­чить числовые значения 6, 7, 8-го столбцов таблицы.

При обработке изучаемого ряда оказалось возможным примене­ние параметрического метода, так как визуально в этом ряду рас­пределение численностей приближается к нормальному. Это под­тверждается и графиком (рис. 2, с. 251).

Н ормальное распределение обладает некоторыми весьма полезными для исследователя свойствами. Так, в границах x ±  находится при­мерно 68% всего ряда или всей выборки, в границах х ± 2 — пример­но 95%, а в границах x ± 3 — 97,7% выборки. В практике иссле­дований часто берут границы — x ±2/3. В этих границах при нор­мальном распределении будут находиться 50% выборки; распреде­ление это симметрично, поэтому 25% окажутся ниже, а 25% выше границ x ±2/3. Все эти расчеты не требуют никакой дополни­тельной проверки при условии, что изучаемый ряд имеет нор­мальное распределение, а число элементов в нем велико, поряд­ка нескольких сотен или тысяч. Для рядов, которые распределе­ны нормально или имеют распределение, мало отличающееся от нормального, вычисляется коэффициент вариации по такой фор­муле:

В примере, который был рассмотрен выше,

V= (100-14,4)/123 = 11,7.

Выполнив все эти вычисления, психолог может представить инфор­мацию об изучении двигательной скорости с помощью примененной методики в 6-х классах. Согласно результатам изучения в 6-х классах получены: среднее арифметическое — 123; среднее квадратическое от­клонение — 14,4; коэффициент вариативности — 11,7.

Непараметрические методы. Ранжирование, медиана, квартиль. Далеко не все материалы, получаемые в психологиче­ских исследованиях, подлежат обработке параметрическими мето­дами. Если после ознакомления с изучаемым рядом исследователь убеждается в том, что этот ряд не имеет свойств нормального рас­пределения, ему остается перейти на методы непараметрической статистики. С их помощью могут быть получены и центральная тенденция изучаемого ряда — медиана — и величина, позволяющая судить о диапазоне варьирования и о строении изучаемого ряда — квартильное отклонение.

Вот пример. После диагностических испытаний уровня умствен­ного развития учеников 6-го класса полученные данные были упо­рядочены, т.е. расположены в последовательности от меньшей ве­личины к большей. Испытания проходили 18 учащихся (табл. 2).

Таблица 2

Учащиеся

Баллы

Ранги (R)

Учащиеся

Баллы

Ранги (R)

А

25

1

К

68

10

Б

28

2

Л

69

11,5

В

39

4

М

69

11,5

Г

39

4

Н

70

14,5

Д

39

4

О

70

14,5

Е

45

6

П

70

14,5

Ж

50

7

Р

70

14,5

3

52

8,5

С

74

17,5

И

52

8,5

Т

74

17,5

Примечание. Буквами обозначены учащиеся, числами — полученные ими баллы по тесту.

Процедура ранжирования состоит в следующем. Все числа ряда в их последовательности получают по своим. порядковым местам присваи­ваемые им ранги. Если какие-нибудь числа повторяются, то всем по­вторяющимся числам присваивается один и тот же ранг — средний из общей суммы занятых ими ранговых мест. Так, числу 28 в изучаемом ряду присвоен ранг 2. Затем следуют трижды повторяющиеся числа 39. На них приходятся занятые ими ранговые места 3, 4, 5. Поэтому этим числам присваивается один и тот же средний ранг, в дан­ном случае — 4. Поскольку места до 5-го включительно заняты, то следующее число получает ранг 6 и т.д.

При обработке ряда, не имеющего признаков нормального рас­пределения — непараметрического ряда, — для величины, которая выражала бы его центральную тенденцию, более всего пригодна ме­диана, т.е. величина, расположенная в середине ряда. Ее определя­ют по срединному рангу по формуле Me = (п + 1)/2, где Me оз­начает медиану, п — как в ранее приводившихся формулах — число членов ряда. При нечетном числе членов ряда ранговая медиана — целое число, при нечетном число — с 0,5. Заметим, что числовое значение медианы может и не быть в составе самого обрабатывае­мого ряда.

Возьмем к примеру ряд в семь членов: 3—5—6—7—9—10—11.

Проранжировав его, имеем: 1—2—3—4—5—6—7.

Ранговая медиана в таком ряду равна: Me = (7 + 1)/2 = 4, этот ранг приходится на величину 7.

Возьмем ряд в восемь членов: 3—5—6—7—9—10—11—12.

Проранжировав его, имеем: 1—2—3—4—5—6—7—8.

Ранговая медиана в этом ряду равна: Me = (8 + 1)/2 = 4,5.

Характеристики

Тип файла
Документ
Размер
519 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6862
Авторов
на СтудИзбе
271
Средний доход
с одного платного файла
Обучение Подробнее