28776-1 (707635), страница 2
Текст из файла (страница 2)
Вращение характеризуется угловой скоростью omega = dfi/dr и угловым ускорением eps = domega/dtau. Линейная скорость точки при вращательном движении v = (dfi/dtau) x r = omega x r . Линейное ускорение:
w = dv/dtau = (domega/dtau) x r + omega x (dr/dtau) = eps x r + omega x omega x r = (w) t + (w) n . (3.1)
Вектор тангенциального ускорения (w) t направлен по касательной к траектории движения, нормального w (n) - к центру вращения.
Модуль вектора полного ускорения
w = [ (eps*ro) **2 + ( (omega**2) *ro) **2]**0.5 = ro*[eps**2 + omega**4]**0.5, (3.2)
где ro - радиус вращения.
3.2.4. Сложное движение звена. Его обычно представляют суммой двух более простых движений: относительного в подвижной системе координат K' и переносного вместе с этой системой относительно системы координат K, которая обычно неподвижна (рис. 3.3) .
3.2.5. Скорости и ускорения при сложном движении. При сложном (абсолютном) движении приращение вектора скорости (v) a:
d (v)a = d (v)o + dfi x r' + (v) r*dtau,
следовательно, абсолютная скорость (v) a есть сумма переносной (v) e и относительной (v) r скоростей:
(v)a = (v) o + omega x r' + (v) r = (v) e + (v) r . (3.3)
Приращение вектора ускорения при сложном движении:
d (w)a = d (w)o + d (omega x r') + dfi x (v) r + (w) r*dtau ;
d (omega x r') = eps x r' + omega x omega x r' + omega x (v) r ;
dfi x (v) r = omega x (v) r.
Таким образом, ускорение при сложном движении
(w)a = (w) o + eps x r' + omega x omega x r' + 2*omega x (v) r + (w) r. (3.4)
Составляющие абсолютного ускорения:
(w)e = (w) o + eps x r' + omega x omega x r' - переносное ускорение;
(w)k = 2*omega x (v) r - ускорение Кориолиса;
(w)r - относительное ускорение.
3.3. Аксоидные поверхности.
3.3.1. Мгновенные оси и аксоидные поверхности. Сложное движение звена можно представить последовательностью мгновенных поворотов вокруг мгновенных осей, меняющих свое положение в пространстве (рис.3.4) . Последовательные положения мгновенных осей в системах координат K (неподвижной) и K' (подвижной) образуют две аксоидные поверхности - неподвижную и подвижную, в каждый момент времени контактирующие друг с другом по прямой линии - мгновенной оси. В общем случае аксоиды катятся друг по другу со скольжением. Формы аксоидных поверхностей определяются видами переносного и относительного движений.
3.3.2. Гиперболоидные аксоиды. Переносное движение совершается вокруг оси omega1, относительное - вокруг оси omega2, оси скрещиваются под углом Sigma (рис. 3.5 и 3.6) . Мгновенная ось - Omega, вдоль нее
аксоиды проскальзывают со скоростью v . Расстояние O1O2 = a, углы delta1
и delta2 определяют по формулам:
a = (v/Omega) [ (1+ 2i*cos (Sigma) + i**2) / (i*sin (Sigma) )], (3.5)
где Omega = omega1 + omega2 ; i = omega1/omega2 ;
O1P/O2P = 1/ (i*cos (Sigma) = (omega2/omega1) /cos (Sigma) ; (3.6)
delta1 = arc tg [sin (Sigma) / (i*cos (Sigma) ] ;
delta2 = Sigma - delta1 . (3.7)
3.3.3. Конические аксоиды. Оси вращательных движений пересекаются, аксоиды перекатываются друг по другу без скольжения (рис. 3.7) .
Углы при вершинах конусов delta1 и delta2 определяют по формулам (3.7) .
3.3.4. Цилиндрические аксоиды. Оси вращательных движений параллельны (рис. 3.8, а - при одинаковых знаках omega1 и omega2, б - при разных) . Цилиндры катятся друг по другу без скольжения; положение мгновенной оси определяют по формуле (3.6) при Sigma = 0:
O1P/O2P = omega2/omega1 . (3.8)
3.3.5. Сложение поступательных движений (рис.3.9) . Поверхность неподвижного аксоида вырождается в траекторию перемещения центра подвижной системы координат K', в которой звено движется поступательно.
3.4. Мгновенные центры скоростей и ускорений.
3.4.1. Мгновенный центр скоростей в плоском движении звена точка, линейная скорость которой в данный момент равна нулю. Для плоского движения - это проекция мгновенной оси на плоскость движения (рис. 3.10) .
Для точек звена выполняется условие
(v)a/AP = (v) b/BP = ... = omega, (3.9)
где omega - угловaя скорость звена; P - мгновенный центр.
При плоском движении аксоиды проецируются на плоскость в виде центроида - геометрических мест мгновенных центров скоростей.
3.4.2. Мгновенный центр ускорений в плоском движении - точка, линейное ускорение которой в данный момент равно нулю.
Из (3.2) для любой точки звена (рис. 3.11) следует:
(w)a/AQ = (w) b/BQ = ... = [eps**2 + omega**4]**0.5,
где eps - угловое ускорение звена; Q - мгновенный центр.
Направление на мгновенный центр ускорений определяется углом между векторами нормального (w) n и полного w ускорений.
Глава 4. КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕХАНИЗМОВ
4.1. Кинематические характеристики механизмов.
4.1.1. Кинематические характеристики - зависимости, связывающие в М положения, скорости и ускорения ведущего звена с соответствующими параметрами ведомого. Эти функции полностью определяются структурой и геометрическими параметрами М.
4.1.2. Функция положения М - зависимость положения ведомого звена от положения ведущего. В общем виде для М (рис. 4.1) :
fin = П (fi1) . (4.1)
4.1.3. Функция скорости М - связь скоростей ведомого звена omegan и ведущего omega1 - производная функции положения:
dfin/dtau = d[П (fi1) ]/dtau = {d[П (fi1) ]/dfi1}* (dfi1/dtau),
d[П (fi1) ]/dfi1= П' (fi1) = omegan/omega1 . (4.2)
Передаточное отношение - величина, обратная функции скорости:
(i)1n = omega1/omegan = 1/П' (fi1) . (4.3)
4.1.4. Функция ускорения М - связь ускорений ведомого звена epsn и ведущего eps1 - вторая производная функции положения:
d2fin/dtau2 = d|{d[П (fi1) ]/dtau}* (dfi1/dtau) |/dtau =
= П'' (fi1) * (dfi1/dtau) **2 + П' (fi1) * (d2fi1/dtau2) =
= П'' (fi1) **omega1**2 + П' (fi1) *eps1 ;
Если принять eps1 = 0, то
П'' (fi1) = d2[П (fi1) ]/dfi12 = epsn/omega1**2 . (4.4)
Следовательно, функция ускорения определяет ускорение ведомого звена М при постоянной скорости ведущего.
4.2. Методы определения кинематических характеристик.
4.2.1. Метод векторного замкнутого контура. Сущность этого аналитического метода: звенья М представляют векторами, которые должны образовать замкнутый контур, т.е. сумма проекций звеньев- векторов на оси произвольно выбранной системы координат должна быть равна нулю.
Уравнение проекций позволяет найти функцию положения, а дифференцирование ее даст функции скорости и ускорения. Для М на рис. 4.2 уравнения проекций на оси X и Z :
r*cos (fi1) + l*cos (fi2) - s = 0;
h + r*sin (fi1) - l*sin (fi2) = 0.
Функция положения
dzet = s/r = cos (fi1) +
+ [ (l/r) **2 - (h/r + sin (fi1) )**2]**0.5 (4.5)
Функции скорости и ускорения:
П' (fi1) = ddzet/dfi1 = v3/ (r*omega1) ;
П'' (fi1) = d2dzet/dfi12 = w3/ (r*omega1**2) .
4.2.2. Графоаналитический метод планов. Сущность его состоит в построении векторных диаграмм, изображающих скорости и ускорения М для одного его положения, т.е. получают мгновенные значения кинематических характеристик М. Исходным является план положений М - изображение М в масштабе при некотором положении ведущего звена (рис. 4.3 а) .
План скоростей - графическое решение векторных уравнений, связывающих скорости абсолютного, переносного и относительного движений точек звеньев (рис. 4.3 б) . Аналогично строится план ускорений (рис. 4.3 в) .
4.3. Соотношение скоростей в высших кинематических парах.
4.3.1. Эти соотношения необходимо определять при анализе и синтезе сложных М с высшими парами. В таких парах звенья в общем случае катятся друг по другу со скольжением. Относительное движение звеньев можно представить, введя в рассмотрение подвижные аксоиды, жестко связанные со звеньями пары.
4.3.2. Кинематическая пара с вращательным движением звеньев.
Звенья вращаются вокруг осей O1 и O2, контактируя в точке K (рис. 4.4) .
Чтобы определить положение мгновенной оси, условно останавливают одно из звеньев, например звено 1, придавая ему и всем остальным скорость - (omega1) . Скорость звена 2 Omega = omega2 - omega1 определит относительное движение, а скорость вращения линии O1O2 (т.е. стойки) - (omega1) - переносное. В соответствии с (3.8) мгновенная ось находится в точке Р, для которой O1P/O2P = omega2/omega1 . Профили звеньев проскальзывают со скоростью vs, которая должна определяться расстоянием до мгновенной оси: vs = Omega*KP = (omega2 - omega1) *KP. Поэтому полюс Р должен находиться на нормали, проведенной к контактирующим профилям звеньев в точке контакта К (рис. 4.4) .
4.3.3. Кинематическая пара с вращательным движением одного звена и поступательным второго. Положение мгновенной оси может быть получено так же, как и в предыдущем случае: из точки контакта К проводят нормаль до пересечения с прямой, исходящей из центра O1 перпендикулярно к направлению линейной скорости v2 звена 2 (рис. 4.5) .
Линейное движение можно считать вращательным вокруг бесконечно удаленного центра, поэтому O2P бесконечно велико, и omega2 = 0. Так как omega2*O2P = v2, следовательно:
O1P*omega1 = v2 . (4.6)
4.3.4. Поступательное движение обоих звеньев. Касательная (рис. 4.6) к профилям звеньев определяет углы alf1 и alf2 между скоростью скольжения vs и скоростями v1 и v2 :
v1/v2 = sin (alf2) /sin (alf1) . (4.7)
4.4. Кинематические характеристики многозвенных механизмов.
4.4.1. Структура многозвенных М. Такие М состоят из соединенных друг с другом структурно-элементарных М с характерными кинематическими признаками основных кинематических пар. Схемы структурно-элементарных М с высшими парами изображены на рис. 4.7 и 4.8.
4.4.2. Передаточные отношения цилиндрических, конических и гиперболоидных пар с круговой формой звеньев (рис. 4.7) определяют в соответствии с (3.8) отношением диаметров аксоидов:
i12 = omega1/omega2 = d2/d1 . (4.8)
4.4.3. Передаточное отношение многоступенчатого М с последовательным соединением цилиндрических колес (рис. 4.9) :
i12 = omega1/omega2 = dn/d1* (-1) **k, (4.9)
где k - число внешних зацеплений (здесь знак учитывает направление вращения выходного звена по отношению к входному) .
Для последовательно- параллельного соединения колес (рис. 4.10) :
i12 = omega1/omega2 = [ (d2/d1) * (d4/d3) ...
... (dn/dn-1) ]* (-1) **k . (4.10)
Если в М имеются конические и гиперболоидные пары, знак не определяют.
4.4.4. Передаточные отношения аксоидных М с переменными радиусами звеньев (рис. 4.11) определяют по формуле, аналогичной (4.8) :
i12 = omega1/omega2 = ro2/ro1, (4.11)
где ro1 и ro2 - текущие значения радиусов аксоидных поверхностей, при чем ro1 + ro2 = a.
4.4.5. Передаточное отношение М с гибким звеном (рис. 4.12) определяют из условия равенства линейных скоростей в точках касания этого звена с основными жесткими:
i12 = omega1/omega2 = AK2/AK1 . (4.12)
Глава 5. ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ
5.1. Задачи анализа; основные понятия и определения.
Задачи динамического анализа:
а) определение усилий, действующих на звенья М при его работе, или силовой анализ;
б) определение законов движения М под действием приложенных усилий, или динамика механизма.
Сила - количественная мера механического взаимодействия тел.
Система сил - совокупность сил, действующих на звено. Система может быть уравновешенной, если под действием ее тело находится в равновесии. Равнодействующая - сила, заменяющая действие системы сил. Момент силы - векторное произведение радиуса-вектора точки приложения силы на саму силу (рис. 5.1) : T = (r) a x F ; плечо силы, создающей момент (расстояние до линии действия силы) : h = (r) a*sin (alfa) .
5.2. Условия равновесия звеньев под действием системы сил.
Звено находится в равновесии, если равнодействующая сила R0 и ее момент T0 равны нулю:
R0 = (Rx**2 + Ry**2 + Rz**2) **0.5 = 0;
T0 = (Tx**2 + Ty**2 + Tz**2) **0.5 = 0. (5.1)
Следовательно, сумма проекций всех сил, действующих на звено, а также сумма проекций моментов этих сил на каждую из координатных осей в отдельности должны равняться нулю:
sum (Fix) = sum (Fiy) = sum (Fiz) = 0;
sum (Tix) = sum (Tiy) = sum (Tiz) = 0. (5.2)
Разновидности уравнений равновесия для плоской системы:
sum (Fix) = 0; sum (Fiy) = 0; sum (Tiz) = 0;
sum (Fix) = 0; sum (Tiy) = 0; sum (Tiz) = 0; (5.3)
sum (Tix) = 0; sum (Tiy) = 0; sum (Tiz) = 0;















