28776-1 (707635), страница 3
Текст из файла (страница 3)
5.3. Характеристика усилий, действующих на звенья механизма.
5.3.1. Классификация усилий. Силы и моменты, действующие на звенья М, делят на три группы:
а) внешние силовые воздействия;
б) усилия, возникающие в звеньях вследствие действия ускорений;
в) внутренние усилия в кинематических парах - реакции.
5.3.2. Внешние усилия: движущие и сопротивления. Работа движущих усилий dA = F*ds положительна, сопротивлений - отрицательна (рис.
5.2) . Усилия полезного сопротивления приложены к выходному звену М, движущие - к входному, ведущему.
5.3.3. Силы веса. Возникают в поле тяготения, пропорциональны массе звена m и ускорению тяжести g : G = m*g . Условно приложены в центре масс - точке, в которой может сосредоточена вся масса звена, причем состояние его под действием сил не изменяется. Координаты центра масс для тела с обьемом V (рис. 5.3) :
(x)c = (1/V) *int (x*dv) V; (y) c = (1/V) *int (y*dv) V;
(z)c = (1/V) *int (z*dv) V . (5.4)
Для плоского сечения площадью S координаты центра масс:
(x)c = (1/S) *int (x*ds) S; (y) c = (1/S) *int (y*ds) S . (5.5)
5.3.4. Инерционные параметры звеньев: масса при поступательном движении и моменты инерции при вращательном - меры инерционности звеньев. Моменты инерции определяют относительно соответствующей координатной оси: Jx, Jy, Jz, или относительно какой-либо точки - Ja ; в последнем случае Ja = Jxa + Jya + Jza . Момент инерции относительно оси, проходящей через центр масс, называют главным моментом инерции.
Для тела обьемом V с равномерно распределенной массой момент инерции
J = int (ro**2*dm) V, (5.6)
где ro - радиус вращения элементарной массы dm.
Моменты инерции некоторых тел относительно осей, проходящих через центры масс:
- шара массой m и радиусом R:
Jc = 0.4*m*R**2 ;
- цилиндра массой m и радиусом R, относительно оси, прохо дящей через центр масс и параллельной образующей:
Jc = 0.5*m*R**2 ;
- тонкого стержня длиной L и массой m, относительно оси, проходящей через центр масс и перпендикулярной продольной оси стержня:
Jc = (m*L**2) /12 .
Момент инерции относительно оси, удаленной от центра масс на расстояние a (рис. 5.4) :
Ja = Jc + ma**2 .
5.3.5. Инерционные усилия. Возникают при действии ускорений, пропорциональны этим ускорениям и массе звена или моменту инерции.
Сила инерции: Fи = -m* (w)c, условно приложена в центре масс и пропорциональна его ускорению (w) c.
Момент инерционной силы: Tи = -Jc* (eps) c, где (eps) c - угловое ускорение, Jc - момент инерции относительно центра масс.
В сложном движении, представляющем сумму поступательного и вращательного, на тело действует инерционная сила Fи и момент инерционной силы Ти (рис. 5.5) .
5.3.6. Реакции в кинематических парах. Взаимно уравновешенные усилия взаимодействия звеньев в подвижных соединениях. Реакцию можно представить как сумму нормальной (R) n и касательной (R) t (рис. 5.6) .
Касательная - сила трения, сопротивление тангенциальному смещению поверхностей - функция нормальной силы.
5.4. Краткая характеристика сил трения.
5.4.1. Трение имеет двойственную молекулярно - механическую природу, зависит как от взаимодействия молекулярных структур поверхностных слоев, так и от их механического сцепления. Силы трения зависят от четырех групп факторов:
а) вида трения - скольжения или качения;
б) свойств поверхностных слоев контактирующих деталей;
в) режима трения;
г) формы поверхностей кинематической пары.
5.4.2. Виды трения. Трение скольжения-процесс, при котором одни и те же зоны первой контактирующей поверхности приходят в соприкосновение с новыми зонами другой (рис. 5.7) .
Углы при трении: gamma - угол давления; fit - угол трения. Коэффициент трения f = tg (fit) .
Fт = (R) t = (R) n*tg (fit) = f* (R)n . (5.7)
В трущейся паре может возникнуть самоторможение, когда движение под действием внешней силы P невозможно, как бы велика она ни была, т.к. при этом P < Fт ; условие самоторможения можно записать в виде: gamma < < fit .
Трение качения - процесс, при котором все новые зоны обеих контактирующих поверхностей вступают в контакт, а мгновенная ось вращения проходит через зону контакта (рис. 5.8, а) . При качении нормальная составляющая реакции сдвинута относительно нормали, проходящей через середину зоны контакта на расстояние k, которое называют коэффициентом трения качения (рис. 5.8, б) .
5.4.3. Вторая группа факторов, определяющая физико-механическое и микрогеометрическое состояние контактирующих поверхностей: молекулярное строение, структура поверхностного слоя, внутренние напряжения в нем, твердость, упругость и другие механические свойства; микрорельеф, присущий каждой технической поверхности, и другие. В частности, микрорельеф, согласно ГОСТ 2789-73, описывается десятью параметрами, среди которых, кроме параметров, характеризующих высоту и шаг микронеровностей, должны быть их форма и направление "в плане".
5.4.4. Третья группа факторов - режим трения: удельное давление, относительные скорости, температура в контактных зонах, наличие или отсутствие на поверхностях трения оксидов или смазочных материалов, свойства этих третьих веществ.
Коэффициенты трения скольжения и качения, учитывающие влияние первых трех групп факторов, исследованы экспериментально и приведены в справочниках, для плоских поверхностей при скольжении и для плоской и цилиндрической - при качении.
5.4.4. Влияние формы контактирующих поверхностей. Учитывается введением приведенных коэффициентов трения: отношения внешних сил движущей P и сжимающей контактирующие поверхности N: f' = P/N. При наличии трения силу P находят через f' :
P = Fт = f'*N, (5.8)
где Fт - приведенная сила трения в кинематической паре.
При качении
P = k*N/r = f'*N,
где f' = k/r - приведенный коэффициент трения качения.
Глава 6. Методы определения реакций в кинематических парах и динамика механизма..
6.1. Методы определения реакций в кинематических парах.
6.1.1. Сущность метода определения реакций. Для большинства методов она сводится к составлению и решению уравнений равновесия для каждого звена, в которые реакции входят как неизвестные. Внешние силы, скорость и ускорение для всех звеньев М должны быть известны; определяют реакции и движущие усилия на ведущем звене М. Инерционные силы учитываются на основе принципа д'Аламбера: в каждое мгновение движения любое тело можно рассматривать находящимся в равновесии под действием системы сил, в которую входят и силы инерции.
6.1.2. Аналитический метод определения реакций. Механизм условно расчленяют на звенья, нагружая каждое внешними усилиями, а в кинематических парах - неизвестными составляющими реакций (рис. 6.1.) . Систему уравнений равновесия для одного звена решить нельзя, так как число неизвестных больше числа уравнений, поэтому звенья обьединяют в статически определимые группы, для которых выполняется условие sum[i*p (i)] -qs =6k.
Пример расчленения M на группы показан на рис. 6.2, а схема определения реакций в группе - на рис.6.3.
Уравнения равновесия для обоих звеньев группы:
sum (Fix) = Rb''*cos (fi2) - Rb'*sin (fi2) - F2*cos (alf2) - F3*cos (alf3) - Rd*sin (fit) = 0;
sum (Fiy) = Rb''*sin (fi2) - Rb'*cos (fi2) - F2*sin (alf2) - F3*sin (alf3) - Rd*cos (fit) = 0;
sum (T2c) = Rb'*l2 - F2*l2s*cos (pi/2 - alf2 + fi2) - T2 = 0;
sum (T3c) = F3*l3'*cos (pi/2 - alf3 + fi3) - T3 - Rd*sin (fit) *h3y +
+ Rd*cos (fit) *h3x = 0.
Решение системы позволяет найти реакции Rb, Rc и Rd и их составляющие.
6.1.3. Графоаналитический метод планов сил. Уравнения статики решают графическим построением плана сил - векторной диаграммы, на которой силы представлены векторами. План сил для группы звеньев показан на рис. 6.3, в. Составляющую реакции Rb' и плечо h3x для реакции Rd находят так же, как и при аналитическом решении.
6.2. Расчет сил и моментов трения.
6.2.1. Силы трения - касательные составляющие реакций - находят по приведенным коэффициентам трения f' = tg (fit), если известны полные реакции в кинематических парах или их нормальные составляющие.
Последовательность определения приведенных коэффициентов трения:
а) из условия равновесия находят нормальные составляющие реакций наконтактных поверхностях;
б) по известным коэффициентам трения на плоских поверхностях рассчи тывают силы трения на реальных поверхностях;
в) из условий равновесия определяют силы движущие;
г) находят приведенный коэффициент трения как отношение движущего уси лия к усилию, сжимающему поверхности звеньев в паре.
6.2.2. Приведенные коэффициенты трения для кинематических пар с трением скольжения:
а) клиновидная направляющая прямолинейного движения (рис. 6.4) :
f' = f*[cos (alf1) + cos (alf2) ]/[sin (alf1 + alf2) ], (6.1)
частный случай: alf1 = alf2 = alfa, f' = f/sin (alfa) ;
б) цилиндрическая направляющая для прямолинейного или вращательногодвижения (рис.6.5) - для произвольного распределения давления по цилиндрической поверхности q = q (fi) :
f' = f{int[q (fi) *dfi]0, alfa}/{int[q (fi) *cos (fi) *dfi]0, alfa}, (6.2)
при q (fi) = q0*cos (fi) и alfa = Pi/2 f' = 4f/Pi ;
в) трение на торцовой поверхности цилиндра (рис. 6.6) :
f' = 1.333*f* (R**2 + R*r + r**2) / (R+ r) **2 ; (6.3)
г) трение в винтовой паре (рис. 6.7):
для прямоугольной резьбы:
T = 0.5*Q*d*f' ; f' = tg (gamma + fit) ; (6.4)
для трапецевидной и треугольной резьб:
f' = tg[gamma + arc tg (f/sin (alfa) )] ; (6.5)
самоторможение в винтовой паре наступает при gamma < fit; в этом случае сила Q не сможет заставить винт вращаться.
6.2.3. Приведенные коэффициенты трения для кинематических пар с трением качения:
а) платформа на катках (рис. 6.8) :
f' = (k1 + k2 )/d ; (6.6)
б) подшипник качения (рис. 6.9) :
T = 0.5*Q*fs*d1; f' = beta*k* (1+ d1/d3) /d1 ; (6.7)
для реальных конструкций подшипников beta = 1.4 - 1.6.
6.3. Коэффициенты полезного действия механизмов.
6.3.1. Коэффициент полезного действия - отношение полезной мощности на выходе Nn к мощности движущего усилия на входе Nд : eta = Nn/Nд . Характеризует совершенство M и потери в нем, которые происходят за счет сил трения Nт = Nд - Nn :
eta = 1 - Nт/Nд . (6.8)
Мощности потерь в кинематических парах: поступательной Nт = Fт*vs, вращательной Nт = Tт*omegas ; vs и omegas - относительные скорости звеньев.
Сложный M можно представить как соединение более простых и КПД определять по КПД простых M, входящих в сложный.
6.3.2. КПД при последовательном соединении простых M (рис. 6.10, а) :
eta1m = Nnm/Nд = eta1*eta2...etam . (6.9)
В такой цепи общий КПД меньше минимального частного КПД.
6.3.3. КПД при параллельном соединении простых M (рис.6.10, б) :
eta1m = Nnsum/Nд = k1*eta1 + k2*eta2 + ... + km*etam, (6.10)
где k1, k2, ... km -коэффициенты, показывающие, какая часть общей мощности подведена к каждому простому M ; k1 + k2 + ... + km = 1.
В такой цепи общий КПД определяется в основном частным КПД M, через который проходит наибольшая мощность.
6.3.4. КПД при параллельно-последовательном соединении M (рис. 6.10, в) :
eta = k1*eta1m*eta2m...+ k2*eta1n*eta2n...etann +...
...+ kp*eta1p*eta2p...etapp, (6.11)
где коэффициенты ki учитывают распределение мощности по цепям;
etaij - частные КПД простых M .
6.4. Определение закона движения механизма.
6.4.1. Динамика - раздел динамического анализа, посвященный определению законов движения звеньев M. Закон движения - зависимость кинематических параметров от времени:
s = s (tau) ; v = v (tau) ; w = w (tau) ;
fi = fi (tau) ; omega = omega (tau) ; eps=eps (tau) ; (6.12)
где s, v, w - линейные, fi, omega, eps - угловые параметры движения.
Сущность метода определение законов движения звеньев и всего M сводится к интегрированию дифференциальных уравнений
F = m* (d2s/dtau2) или T = J* (d2fi/dtau2), являющихся выражением второго закона механики (закона Ньютона) .
Особенность определения законов движения звеньев:
а) многочисленность звеньев в сложных M, поэтому для каждого звена могут быть свои законы движения;
б/ связанность звеньев и следовательно, их движений.
6.4.2. Определение закона движения звена приведения. Чтобы оперировать минимальным числом параметров, в механизме выделяют звено приведения - какое-либо из звеньев, характер движения которого простейший: движение это прямолинейное или вращательное. Влияние массовых характеристик остальных звеньев и действующих на них усилий учитывают с помощью приведенных параметров, значения которых определяют из условий энергетической эквивалентности звена приведения и всего М. Это значит, что энергия и характер ее изменения для звена приведения и для всего M в каждый момент времени одинаковы.
6.4.3. Приведенные массовые характеристики. При поступательном движении звена приведения со скоростью (v) пр приведенную массу (m) пр находят из условия равенства кинематических энергий звена и всего M, в котором массы mi совершают поступательные движения со скоростями vi, а моменты инерции Jk - вращательные со скоростями omegak :
(m)пр = sum{ mi*[vi/ (v)пр]**2 } + sum{ Jk*[omegak/ (v)пр]**2 }. (6.13)
Соотношения vi/ (v)пр и omegak/ (v)пр представляют собой функции скорости для звеньев M, определенные по отношению к звену приведения, поэтому приведенная масса - переменная величина, определяемая функцией положения M - формой и размерами звеньев и их взаимными положениями.
Если звено приведения вращается со скоростью (omega) пр, оно должно обладать приведенным моментом инерции
(J)пр = sum{ mi*[vi/ (omega) пр]**2 } +
+ sum{ Jk*[omegak/ (omega) пр]**2 }, (6.14)
который также определяется функцией положения.
6.4.4. Приведенные силовые характеристики. Это - приведенная сила и приведенный момент, определяемый из условий равенства мощностей на звене приведения и во всем M . Приведенная сила
(F)пр = sum{ Fi*[vi/ (v)пр]**2 } + sum{ Tk*[omegak/ (v)пр]**2 }; (6.15)
приведенный момент
(T)пр = sum{ Fi*[vi/ (omega) пр]**2 } +
+ sum{ Tk*[omegak/ (omega) пр]**2 }; (6.16)
6.4.5. Уравнение движения звена приведения. Может быть получено из условия эквивалентности изменения энергии и работы на некотором элементарном перемещении (обычно учитывают только кинетическую энергию E подвижных звеньев) :
dA = dE = T*dfi ; dA = dE = F*ds,
где dA - элементарная работа на элементарном перемещении dfi или ds,















