125880 (690733), страница 5
Текст из файла (страница 5)
Рисунок 14. Схема конического подшипника качения.
Формула для определения диаметра делительной окружности колеса d1 имеет вид:
d1= z2 , (15)
где m – нормальный модуль зубчатого зацепления;
β – угол наклона линии зуба;
z2 – число зубьев колеса;
d1=1,5·100/cos16˚15΄37˝=150/0,96=156,25 (мм);
Окружную силу определим по формуле:
Ft=2·М∑max/d1, (16)
где М∑max – максимальный момент на тихоходном валу;
dк=d1 – диаметр начальной окружности;
Ft=2·216/156,25·10-3=432/156,25·10-3=2764,8 Н .
Осевую составляющую Fa определим по формуле:
Fa=Ft·tgβ , (17)
Fa=2764,8·tg16˚15΄37˝=805,87 Н.
Радиальную силу определим по формуле:
Fr=(Ft·tgαw)/cosβ , (18)
где αw – угол зацепления косозубой передачи в нормальном сечении (αw≈20˚);
Fr= =1048,032 Н .
РАСЧЁТ ТИХОХОДНОГО ВАЛА НА ПРОЧНОСТЬ
Расчёт состоит из нескольких этапов:
1. формирование расчётной схемы вала;
2. расчёт вала на статическую прочность;
3. проектировочный расчёт шпоночного или шлицевого соединения;
4. расчёт вала на выносливость.
Валы в редукторах выполняют ступенчатыми, т.к. это обеспечивает удобный монтаж, надёжную фиксацию подшипников и зубчатых колёс.
Расчёт проводится для тихоходного вала, как наиболее нагруженного.
ФОРМИРОВАНИЕ РАСЧЁТНОЙ СХЕМЫ ВАЛА
Будем считать, что сила, действующая со стороны ролика, на беговую дорожку внутреннего кольца подшипника, приложена в геометрическом центре конического ролика.
Будем полагать, что геометрический центр ролика определяется в осевом направлении размером С/2 и лежит на окружности диаметром
dср= =
=65 (мм).
В качестве прототипа был взят чертёж тихоходного вала мотор-редуктора МЦ-80 (Лист 38) из каталога [3].
Формирование расчётной схемы тихоходного вала показано на Рисунке 16.
При установке радиально-упорных конических подшипников враспор наблюдается смещение опор на расчётной схеме внутрь относительно тел качения на величину 1.
Определим S – смещение опоры относительно середины наружного кольца подшипника:
S= =
=
·tg12˚=6,91 (мм).
Определим L=2T+tk+a+b , - расстояние между внешними торцами подшипников,
где T – габаритная ширина подшипника;
tk – ширина венца зубчатого колеса;
a – ширина упорного буртика;
b – размер ступенчатой части колеса.
Формирование расчётной схемы вала.
Размеры a и b получены масштабированием сборочного чертежа мотор-редуктора МЦ-80 – [3] и исходя из рекомендаций по выбору данных размеров.
a=6 , b=8
Тогда получим:
L=2·25,25+25+6+8=89,5 (мм).
Определим расчётную длину вала lрас по формуле:
lрас=L-2·( +1)=89,5-2·(
)=67,5 (мм);
где с – ширина наружного кольца подшипника.
Найдём длину lk2, которая определяет положение срединной плоскости колеса:
lk2=(Т+tk/2)-( +1)=(25,25+25/2)-(
)=26,75 (мм).
Зная lk2 , определим размер lk1:
lk1=lрас-lk2=67,5-26,75=40,75 (мм).
РАСЧЁТ ВАЛА НА СТАТИЧЕСКУЮ ПРОЧНОСТЬ
Заменим шарнирные опоры силами реакции, а силы, действующие в зубчатом зацеплении, приведём к оси вала:
Ma=Fa·dw/2=Ft·tgβ·dw/2=(2·М∑max/dw)·tgβ·dw/2=М∑max·tgβ=216·0,292=62,96(Н·м);
Mt=Ft·dw/2=(2·М∑max/dw)·dw/2=М∑max=216 (Н·м);
Разложим реакции опор Ra и Rc на составляющие по осям, и найдём их.
1. Составляющие по оси X:
∑Mcy=-xa·lрас+Ft·lk2=0;
xa=( Ft·lk2)/lрас=(2764,8·26,75·10-3)/67,5·10-3=1095,68 Н;
∑May= xc·lрас-Ft·lk1=0;
xc=( Ft·lk1)/lрас=(2764,8·40,75·10-3)/67,5·10-3=1669,12 Н;
2. Составляющие по оси Y:
∑Mcx=-ya·lрас+Ma+Fr·lk2=0;
ya=(Ma+Fr·lk2)/lрас=(62,96+1048,032·26,75·10-3)/67,5·10-3=1348,07 Н;
∑Max=yc·lрас+Ma-Fr·lk1=0;
yc=(-Ma+Fr·lk1)/lрас=(-62,96+1048,032·40,75·10-3)/67,5·10-3=-300,04 Н;
3. Составляющие по оси Z:
∑Fz=Fa-zc=0; zc=Fa=805,87 Н.
Допущения:
1) пренебрежём влиянием на прочность касательных напряжений от поперечной силы.
2) не учитываем циклический характер нагружения вала, а также влияние на прочность конструктивных (концентрация напряжения) и технологических факторов.
Расчётная схема вала показана на Рисунке 17.
По эпюрам внутренних силовых факторов видно, что опасным сечением является сечение B (под срединной плоскостью колеса (слева)).
В точке Е реализуется плоское упрощенное напряжённое состояние. Для определения эквивалентного напряжения в точке Е воспользуемся третьей теорией прочности.
Запишем условие прочности:
σЕэкв=[σ], для стали 40Х [σ]=80 МПа; (*)
σІІІэкв=σ1-σ3=((σ/2)+√(σ/2)2+τ2)-((σ/2)-√(σ/2)2+τ2)=√σ2+4τ2 .
Для нашего случая воспользуемся частной формулой для определения σэкв:
σЕэкв= ·√M2изг+M2∑max .
Подставим данное выражение для σЕэкв в условие прочности и выразим параметр d:
·√M2изг+M2∑max ≤[σ];
d3≥(32·√M2изг+M2∑max)/[σ]·π; d≥ √(32·√M2изг+M2∑max)/[σ]·π ;
[d]= =
=3,07·10-2 (м) = 30,7 (мм).
По ГОСТ 6636-69 «Нормальные линейные размеры» выбираем размер [d]ГОСТ=31 мм.
Тогда d=max(dкат ;[d]ГОСТ)=max(0,044 ; 0,031)=0,044 (м) =44 (мм).
ПРОЕКТИРОВОЧНЫЙ РАСЧЁТ ШПОНОЧНОГО СОЕДИНЕНИЯ
Таблица 7. Размеры шпонки по ГОСТ 23360-78.
Диаметр вала d, мм | Ширина шпонки b, мм | Высота шпонки h, мм | Глубина паза вала t1, мм |
44 | 12 | 8 | 5,0 |
Расчёт шпоночного соединения проводим по напряжениям смятия σсм:
σсм ≤ [σсм] (19)
Для стали 45, из которой чаще всего изготавливают шпонки [σсм]=180 МПа, но так как характер нагрузки – сильные толчки, то это напряжение необходимо понизить на 35%. В результате получим [σсм]=117 МПа.
σсм = Nсм/Sсм ,
где Nсм – сила смятия; Sсм – площадь смятия.
Sсм=(h-t1)·lраб , lраб=l-b , Sсм=(h-t1)·(l-b).
Nсм определим из условия равновесия:
∑Mz=M∑max-Nсм·d/2=0 , Nсм=2· M∑max/d .
Подставим полученные выражения для Sсм и Nсм в условие прочности (19):
2· M∑max/d·(h-t1)·(l-b) ≤ [σсм] . (20)
Из полученного равенства (20) выразим l:
l ≥ (2· M∑max/[σсм]·d·(h-t1))+b;
[l]= =0,04 (м) = 40 (мм).
Т.к. длина шпонки [l]=40 (мм) получилась больше, чем длина ступицы Lст=33 (мм) (Lст=tk+b=25+8=33 (мм)), то одна шпонка не удовлетворяет условию прочности. Исходя из этого, необходимо поставить две диаметрально расположенные шпонки. В этом случае длина шпонки будет определяться неравенством:
l ≥ (M∑max/[σсм]·d·(h-t1))+b;
[l]= =0,026 (м) = 26 (мм).
Согласно ГОСТ 23360-78 длину шпонки выбираем l=28 (мм).
Lст-l =33-28=5 (мм),
что удовлетворяет условию выбора шпонок: Lст-l =5…15 (мм).
По результатам проектировочного расчёта шпоночного соединения назначим две диаметрально расположенные шпонки 12×8×28 по ГОСТ 23360-78.
РАСЧЁТ ВАЛА НА ВЫНОСЛИВОСТЬ
Все расчётные зависимости и значения коэффициентов взяты из учебника [5].
Проверочный расчёт вала на выносливость выполним с учётом формы циклов нормального и касательного напряжений, конструктивных и технологических факторов. Проверочный расчёт заключается в определении расчётного фактического коэффициента запаса прочности и сравнении его со значением нормативного коэффициента.
n ≥ [n] ,
где [n]=2,5 – значение нормативного коэффициента запаса прочности.
Значение n найдём по формуле:
n= , (21)
где nσ – фактический коэффициент запаса прочности по нормальным напряжениям;
nτ – фактический коэффициент запаса прочности по касательным напряжениям.
Величину nσ определим по формуле:
nσ=σ-1/[(kσ·β·σa/εσ)+σm·ψσ] , (22)
где σ-1=410 МПа для стали 40Х (термообработка улучшение) – предел выносливости стали при симметричном изгибе;
kσ=1,77 – (для канавки, полученной пальцевой фрезой) – эффективный коэффициент концентрации нормальных напряжений при изгибе;
β=1,2 – коэффициент, отражающий влияние качества обработки поверхности вала (вид обработки – точение);
εσ=0,81 – коэффициент масштабного фактора (соответствует диаметру вала равному 44 мм);
ψσ=0,1 – коэффициент, отражающий влияние асимметрии цикла на усталостную прочность;
σa – амплитуда цикла нормальных напряжений при изгибе;
σm – среднее напряжение цикла при изгибе.
При определении параметров цикла (σm и σa) будем использовать следующие допущения:
1) максимальные и минимальные напряжения реализуются в одной и той же опасной точке, положение которой было определено ранее (пункт 7.2);
2) будем считать, что изгибающий момент в сечении изменяется пропорционально крутящему моменту.
Значения σa вычисляется по формуле:
σa=(σmax-σmin)/2 .
Значения σm вычисляется по формуле:
σm=(σmax+σmin)/2 .
Найдём величину σmax по формуле:
σmax =Mmaxизг / Wx ,
где Mmaxизг=70,79 Н·м;
Wx=0,1·d3-b·t1·(d-t1)2/d –
момент сопротивления сечения вала с двумя шпоночными канавками.
Wx=0,1·(44·10-3)3 - =6,44·10-6 (м3);
σmax = =11·106 (Па).
Из графика зависимости нормальных напряжений от угла поворота вала (Рисунок 21) видно, что минимальные нормальные напряжения σmin действуют, когда вал находится в 9 положении.