125707 (690652), страница 5
Текст из файла (страница 5)
Варнант 4К. D=800 мм, dH = 20X2 mm, z = 6, n/z = 618/6= 103.
Результаты расчета: Re1 =8560, α1 =2030 Вт/(м2∙К), Re2 = 7754,
α2 = 2941 Вт/(м2∙К)
К=611 Вт/(м2∙К), F=90,3 м2.
Из табл. I Приложения видно, что теплообменник с трубами длиной 3,0 м, номинальной поверхностью F4K= 116 м2 подходит с запасом ∆ = 28,5 %. Его масса M4K = 3550 кг, что на 400 кг меньше, чем в варианте ЗК.
Дальнейшее сопоставление трех конкурентоспособных вариантов (IK, ЗК и 4К) проводят по гидравлическому сопротивлению.
2.2 Расчет гидравлического сопротивления кожухотрубчатых теплообменников
Гидравлический расчет проводят по формулам, приведенным ниже.
В трубном пространстве перепад давления определяют по формуле (1.1), в которой длина пути жидкости равна Lz. Скорость жидкости в трубах
ωтр=
Коэффициент трения определяют по формулам (1.4) — (1.7). При ReTp> 2300 его можно также определить по формуле [6]:
где e=∆/d — относительная шероховатость труб; ∆ — высота выступов шероховатостей (в расчетах можно принять ∆ = 0,2 мм).
Коэффициенты местных сопротивлений потоку, движущемуся в трубном пространстве:
ξтр1 = 1.5 — входная и выходная камеры;
ξтр2 = 2,5— поворот между ходами;
ξтр3= 1,0 — вход в трубы и выход из них.
Местное сопротивление на входе в распределительную камеру и на выходе из нее следует рассчитывать по скорости жидкости в штуцерах. Диаметры штуцеров нормализованных кожухотрубчатых теплообменников приведены в таблице.
В межтрубном пространстве гидравлическое сопротивление можно рассчитать по формуле:
∆ρмтр= (∑ξмтр)∙ρмтр∙ω2мтр /2
Скорость жидкости в межтрубном пространстве определяют по формуле
ωмтр=Gмтр/(Sмтр∙ρмтр
где Sмтp — наименьшее сечение потока в межтрубном пространстве
(см. табл. 2.3—2.5).
Коэффициенты местных сопротивлений потоку, движущемуся в межтрубном пространстве:
ξтр1= 1,5 — вход и выход жидкости;
ξтр2= 1,5 — поворот через сегментную перегородку;
ξтр3= 3m/Re0,2мтр — сопротивление пучка труб [13, с. 455],
где Reмтр=Gмтрdн/(Sмтрµмтр); m — число рядов труб, которое приближенно можно определить следующим образом.
Общее число труб при их размещении по вершинам равносторонних треугольников равно п= 1 + 3а + 3а2, где а — число огибающих трубы шестиугольников (в плане трубной доски). Число труб в диагонали шестиугольника b можно определить, решив квадратное уравнение относительно а:
b = 2а+l=2V(n—1) /3 + 0,25.
Число рядов труб, омываемых теплоносителем в межтрубном пространстве, приближенно можно принять равным 0,5b, т. е.
m =
Сопротивление входа и выхода следует также определять по скорости жидкости в штуцерах, диаметры условных проходов которых приведены в таблице.
Число сегментных перегородок зависит от длины и диаметра аппарата. Для нормализованных теплообменников эти числа приведены в табл. 2.7.
Расчетные формулы для определения гидравлического сопротивления в трубном и межтрубном пространствах окончательно принимают вид:
где г — число ходов по трубам;
∆ρмтр =
где х — число сегментных перегородок; т — число рядов труб, преодолеваемых потоком теплоносителя в межтрубном пространстве.
- Расчет гидравлического сопротивления. Сопоставим три выбранных варианта кожухотрубчатых теплообменников по гидравлическому сопротивлению.
Вариант 1К. Скорость жидкости в трубах
ωтр=G1/(Sтр∙ρ1)=6/(0,018∙986)=0,338 м/с
Коэффициент трення рассчитывают по формуле (2.31):
Диаметр штуцеров в распределительной камере dTp ш = 0,150 м; скорость в штуцерах
ωтр.ш = 6,0∙4/(π∙0,152∙986) =0.344 м/с.
В трубном пространстве следующие местные сопротивления: вход в камеру и выход из нее, три поворота на 180°, четыре входа в трубы и четыре выхода из них.
В соответствии с формулой (2.35) гидравлическое сопротивление трубного пространства равно
= =2716 + 873+175 = 3764 Па.
Число рядов труб, омываемых потоком в межтрубном пространстве, m≈
; округляя в большую сторону, получим т = 9. Число сегментных перегородок х= 18 (см. табл. 2.7). Диаметр штуцеров к кожуху dмтр.ш = 0,200 м, скорость потока в штуцерах:
Wмтр.ш = 21,8∙4/(π∙0,22∙996)=0,697 м/с.
Скорость жидкости в наиболее узком сечении межтрубного пространства площадью Sмтp=0,040 м2 (см. табл. 2.3) равна:
ωмтр =21,8/(0,040-996) =0,547 м/с.
В межтрубном пространстве следующие местные сопротивления: вход и выход жидкости через штуцера, 18 поворотов через сегментные перегородки (по их числу х = 18) и 19 сопротивлений трубного пучка при его поперечном обтекании (х + 1).
В соответствии с формулой (2.36) сопротивление межтрубного пространства равно
∆ρмтр =
= 10 902+4023 + +725=15 650 Па.
Вариант ЗК. Аналогичный расчет дает следующие результаты:
ωтр = 0,277 м/с; λ=0,0431; ωтр ш = 0,344 м/с; ∆ртр = 2965 Па; ωтр = 0,337 м/с; ωмтр.ш = 0,446 м/с; m= 12; х = 8; ∆рмтр = 3857 Па.
Сопоставление этого варианта с вариантом 1К показывает, что, как и ожидалось, по гидравлическому сопротивлению вариант ЗК лучше.
Вариант 4К. Результаты расчета: ωтр=0,304 м/с; λ=0,0472; ωтр.ш = 0,344 м/с; ∆ртр = = 3712 Па; ωмтр = 0,337 м/с; ωмтр.ш = 0,446 м/с; m=15; x: = 6;
∆рмтр = 3728 Па.
Сопротивление этого теплообменника мало отличается от сопротивления предыдущего, а его масса на 400 кг меньше. Поэтому из дальнейшего сравнения вариант ЗК можно исключить, считая конкурентоспособными лишь варианты 1К и 4К. Выбор лучшего из них должен быть сделан на основе технико-экономического анализа.
2.3 Расчет пластинчатого теплообменника
Для той же технологической задачи, что и в предыдущем разделе, рассчитать и подобрать нормализованный пластинчатый теплообменник.
Эффективность пластинчатых и кожухотрубчатых теплообменников близка. Поэтому ориентировочный выбор пластинчатого теплообменника целесообразно сделать, сравнив его с лучшим вариантом кожухотрубчатого. Из таблицы следует, что .поверхности, близкие к 100 м2, имеют теплообменники с пластинами площадью 0,6 м2. Для уточненного расчета выберем три варианта: '
1П: f=80 мг, число пластин N=136, тип пластин 0,6;
2П: F = 63 м2, число пластин N=108, тип 0,6;
ЗП: F = 50 м2, число пластин N=86, тип 0,6.
Расчет по пунктам I—4 аналогичен расчету в разд. 2.4.1, поэтому опускаем его.
- Уточненный расчет требуемой поверхности.
Вариант 1П. Пусть компоновка пластин самая простая: Сх:68/68, т. е. по одному пакету (ходу) для обоих потоков. Скорость горячей жидкости в 68 каналах с проходным сечением 0,00245 м2 (см. табл. 2.14) равна
ω1 = 6,0/ (986 • 68• 0,00245) = 0,0365 м/с.
Эквивалентный диаметр каналов dэ = 0,0083 м (см. табл. 2.14); тогда
Re, = 0,0365∙0,0083∙986/0,00054 = 553> 50,
т. е. режим турбулентный, поэтому по формуле (2.20) находим:
α1 = (0.662/0,0083) 0,135∙5530,73∙3,420,43= 1836 Вт/(м2∙К).
Скорость холодной жидкости в 68 каналах:
ω2 = 21,8/ (996∙68∙0,00245) =0,1314 м/с;
Re2 = 0,1314 • 0,0083 • 996/0,000804 = 1351 > 50:
α2= (0,618/0,0083) 0,135∙13510,73∙5,440,43 = 4017 Вт/(м2∙К).
Сумма термических сопротивлений гофрированной пластины из нержавеющей стали толщиной 1,0 мм (см. табл. 2.14) и загрязнений составляет:
∑δ/λ = 1,0∙10-3/17.5+ 1/2900+ 1/2900 = 0,000747 м2∙К/Вт.
Коэффициент теплопередачи равен:
К= (0,000747 +1/1836 + 1/4017)-'=649 Вт/(м2-К).
Требуемая поверхность теплопередачи
F= 1822 650/(649∙40,8) =68,8 м2.
Теплообменник номинальной поверхностью F1п = 80 м2 подходит с запасом
∆= (80 — 68,8) 100/68,8=16,3%.
Его масса М1п=1690 кг (см. табл. 2.13).
Вариант 2П. Схема компоновки пластин Сх:54/54. Результаты расчета:
ω1= 6,0/(986∙54∙0,00245) =0,046 м/с; Re1=0,046∙0,0083∙986/0,00054 = 697;
α1 = 1836(697/553)0,73 = 2147 Вт/(м2∙К);
ω2=21,8/(996∙54∙0,00245) =0,165 м/с;
Re2 = 0,165∙0,0083∙996/0,000804 =1697;
α2 = 4017(1697/1351)0,73 = 4744 Вт/(м2∙К);
К= (1/2174+ 1/4744+ 0,000747)-1=705 Вт/(м2∙К);
F =1 822 650/(40,8∙705) =63,3 м2.
Номинальная поверхность F2п = 63,0 м2 недостаточна, поэтому необходимо применить более сложную компоновку пластин. Очевидно, целесообразно увеличить скорость движения теплоносителя с меньшим коэффициентом теплоотдачи, т. е. горячей жидкости. При этом следует иметь в виду, что несимметричная компоновка пластин, например по схеме Сх:(27+ 27)/54, приведет к уменьшению средней движущей силы, поскольку возникнет параллельно-смешанный вариант ' взаимного, направления движения теплоносителей. При симметричной компоновке, т. е. при одинаковом числе ходов для обоих теплоносителей, сохраняются противоток и среднелогарифмическая разность температур.
Рассмотрим Сх: (27+27)/54. Скорость горячей жидкости и число Re1 возрастут вдвое, а коэффициент теплоотдачи ai увеличится в соответствии с формулой (2.20) в 20,73= 1,66 раза. Коэффициент α2 останется неизменным. Получим:
α1=2174∙1,66 = 3605 Вт/(м2∙К);
К=( 1/3605+ 1/4744+0,000747)-1=810 Вт/(м2∙К).
В данном случае поправку на среднелогарифмическую движущую силу можно найти так же, как для кожухотрубчатых теплообменников с одним ходом в межтрубном пространстве и четным числом ходов в трубах:
ε∆t = 0,813 (см. разд. 2.4.1).
Тогда
∆tср = 40,8∙0,813 = 33,2°С.
Требуемая поверхность теплопередачи
F=1822 650/(810∙33,2) =67,8 м2.
Номинальная поверхность F2п=63,0 м2 по-прежнему недостаточна.
Перейдя к симметричной компоновке пластин, например по схеме Сх: (27 + 27)/(27 + 27), вернемся к схеме чистого противотока с одновременным увеличением α2 в 1,66 раза:
α2 = 4744 •1,66 = 7875 Вт/ (м2 • К);
К = (I /3605 + 1 /7875 + 0.000747) -1 = 869 Вт/ (м2 • К);
F= 1 822 650/(40,8∙869) =51,4 м2.
Теперь нормализованный теплообменник подходит с запасом
∆= (63 — 51,4) 100/51,4=22,6%.
В этом теплообменнике скорость горячей жидкости
ω1 =0,046∙2 = 0,092 м/с, Re1 =697∙2= 1394,















