166018 (685434), страница 9

Файл №685434 166018 (Теория симметрии молекул) 9 страница166018 (685434) страница 92016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

. (40)

Из соотношений ортогональности для матриц неприводимых представлений следует, что этот оператор дает возможность получить eigs по формуле

, i=1, 2, …, t. (41)

Все сказанное можно выразить в виде следующего алгоритма.

Для того, чтобы найти базу модуля М из элементов, преобразующихся по неприводимым представлениям Тi, содержащихся в представлении Т, связанном с модулем М, необходимо:

  1. По формуле (32) найти размерности подпространств Мij, соответствующих j-компоненте неприводимого представления Ti.

  2. Найти с помощью оператора проектирования (39) все подпространства Mij.

  3. В каждом подпространстве Mij выбрать произвольную ортонормированную базу.

  4. Используя формулу (41), найти все элементы базы, преобразующихся по остальным компонентам неприводимого представления Тi.

Заключение

Группы – один из основных типов алгебраических систем, а теория групп – один из основных разделов современной алгебры. Понадобилась работа нескольких поколений математиков прежде чем идея групп выкристаллизовалась с ее сегодняшней ясностью. От Лагранжа через работы Руффини и Абеля к Эваристу Галуа, в работах которого уже достаточно сознательно используется идея группы (им же впервые введен и сам термин), - вот путь, по которому развивалась эта идея в рамках теории алгебраических уравнений. В настоящее время теория групп является одной из самых развитых областей алгебры, имеющей многочисленные применения в как в самой математике, так и за ее пределами – в топологии, теории функций, кристаллографии, квантовой механике и других областях математики и естествознания. Конечной целью собственно теории групп является описание всех групповых композиций.

Понятие группы позволяет в точных терминах охарактеризовать симметричность той или иной геометрической фигуры. Именно с таких позиций Е.С. Федоров решил задачу классификации правильных пространственных систем точек, являющуюся одной из основных задач кристаллографии.

Независимо и по другим причинам идея группы возникла в геометрии, когда в середине XIX в. на смену единой античной геометрии пришли многочисленные «геометрии» и остро встал вопрос об установлении связей и родства между ними. Выход был указан «Эрлангенской программой» Клейна, положившей в основу классификации геометрий понятие группы преобразований.

Лежащее в фундаменте современной математики понятие группы является весьма разносторонним орудием самой математики. Вместе с тем группы – это мощный инструмент познания одной из наиболее глубоких закономерностей реального мира – симметрии.

Список использованной литературы

  1. Морозов В.П., Дышлис А.А. Лекции по теории симметрии молекулы: Учеб. пособие. – Днепропетровск: Изд-во ДГУ, 1991. – 180 с.

  2. Александров П.С. Введение в теорию групп. – М.: Наука. Главная редакция физико-математической лит-ры, 1980 – 144 с.

  3. Каргаполов М.И., Мерзляков Ю.И. Основы теории групп – 4-е изд., перераб. – М.: Наука. Физматлит, 1996 – 288 с.

  4. Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул./ Серия «Учебники и учебные пособия». Ростов-на-Дону: «Феникс», 1997 – 560 с.

  5. Дей К., Селби Д. Теоретическая неорганическая химия. Пер. с англ.; под ред. д-ра хим. наук К.В. Астахова. Изд. 3-е, испр. и доп. М., «Химия», 1976 – 568 с.

  6. Виленкин Н.Я. Специальные функции и теория представлений групп. – М.: Наука, 1965 – 588 с.

  7. Глинка Н.Л. Общая химия: Учеб. пособие для ВУЗов, - 23-е изд., испр./ Под ред. В.А. Рабиновича. – Л.: Химия, 1983 – 704 с.

  8. Курош А.Г. Курс высшей алгебры – М.: Наука, 1971 – 432 с.

Характеристики

Тип файла
Документ
Размер
12,79 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее