166018 (685434), страница 5
Текст из файла (страница 5)
(еi)=a1ie1+a2ie2+…+akiek, i=1, 2, …, k.
Но так как эти векторы лежат и в пространстве V, то можно также написать
(еi)=a1ie1+a2ie2+…+akiek+0ek+1+…+0en, i=1, 2, …, k.
Что же касается отдельных базисных векторов ek+1, ek+2, …, en, то, поскольку они не принадлежат W, их образы выражаются через базис наиболее общим способом и получаем следующую картину:
(е1)=a11e1+a21e2+…+ak1ek+0ek+1+…+0en
(е2)=a12e1+a22e2+…+ak2ek+0ek+1+…+0en
(еk)=a1ke1+a2ke2+…+akkek+0ek+1+…+0en
(еk+1)=a1,k+1e1+a2,k+1e2+…+ak,k+1ek+ ak+1,k+1ek+1+…+an,k+1en
(еn)=a1ne1+a2ne2+…+aknek+ ak+1,nek+1+…+annen.
Отсюда видно, что матрицы всех элементов группы G в предствлении Т будут одновременно иметь следующий вид:
(6)
Поэтому на языке матриц матричное представление называется приводимым, если все матрицы его могут быть записаны при определенном выборе базиса в виде (6). Если же ни при каком выборе базиса матрицы представления нельзя записать в указанном виде, представления называются неприводимыми.
3. Представления групп и модули
Рассмотрим конструкцию, позволяющую, зная представления групп, построить модуль М над кольцом K, связанный с этим представлением. Пусть теория представлений групп сформулирована на языке матриц и линейных операторов. Все матрицы данного порядка (линейные операторы в n-мерном пространстве) образуют относительно операций сложения и умножения матриц (линейных операторов) кольцо. Матрицы (линейные операторы) образуют алгебру в смысле следующего определения.
Определение 7. Алгеброй А над полем Р называется множество, в котором введены операции сложения и умножения элементов, а также операция умножения аА, Р, аА элементов поля Р на элементы из А, причем: 1) относительно операций сложения и умножения А является кольцом; 2) относительно операций сложения и умножения на элементы поля Р алгебра является векторным пространством; 3) операции умножения элементов кольца и умножения на элементы из поля связаны аксиомой
(ab)=(a)b=a(b); P; a, bA (7)
Матрицы, которые сопоставляются элементами группы в представлении Т, составляют лишь часть из множества всех матриц Мn, что следует хотя бы из того, что они невырождены. Однако, если Т(g1), Т(g2), …, T(gs), s=|G| - все матрицы представления группы G, то с ними можем связать алгебру, состоящую из всевозможных линейных комбинаций этих матриц вида
K=1 Т(g1)+2 Т(g2)+..+sT(gs); iR или С (8)
Пусть Р – поле комплексных или вещественных чисел. Рассмотрим формальные суммы вида
=1g1+2g2+…+ngn; iP; giG; i=1, 2, …, n; n=|G| (9)
Подчеркнем, что так как в группе G есть только одна операция – умножение, левую часть нельзя рассчитывать как результат сложения элементов правой части. Назовем две суммы и
равными, если i=i. Введем операцию сложения формальных сумм по правилу:
+=(1+1)g1+(2+2)g2+…+(n+n)gn= ; i=i+i.
Видим, что на множестве формальных сумм определена операция сложения, так как в результате операции снова получилась формальная сумма вида (9). Введем далее операцию умножения формальных сумм. Получим кольцо, которое называется групповым кольцом группы G над полем Р и обозначается в виде PG. Это кольцо можно превратить в алгебру. Для этого надо определить умножение P на PG. Умножение задается по формуле
. (10)
Относительно сложения и умножения по этой формуле PG представляет собой векторное пространство (аксиома (7)). Построенная алгебра называется групповой алгеброй группы G и обозначается, как и групповое кольцо, в виде PG.
Если сопоставить каждому элементу gi в выражении (9) матрицу T(gi) этого элемента в представлении Т, то получим матрицу (8), которую обозначим буквой K, так как она является элементом группового кольца матриц K. Как следует из определения модуля, главное при построении модуля – ввести умножение векторов на элементы группового кольца. Пусть V – пространство представления Т группы G. Произвольный вектор v этого пространства зададим координатами. Если А – матрица линейного оператора , действующего в векторном пространстве, то можно получить вектор v1, в который переходит вектор v под действием оператора
. Для этого надо просто умножить по правилу умножения матриц вектор v на матрицу А. Аналогично выполняется умножение вектора v на элемент группового кольца (и алгебры) PG:
v=vk=v1, PG, v1V, kK. (11)
Теперь, используя правило умножения (11) легко проверить условия определения модуля. Полученный модуль М называется модулем представления Т.
Если известен модуль М над групповой алгеброй PG, то можно получить представление, связанное с этим модулем. Так как группе G принадлежит единица I, то каждый элемент pP можно записать в виде p=pI. Отсюда следует, что модуль М является векторным пространством над полем Р. Поэтому каждому элементу PG можно сопоставить оператор (), действующий в векторном пространстве М по правилу
()(m)=m (12)
В частности, любому элементу gG можно сопоставить оператор (g), действующий по правилу
(g)(m)=mg. Сопоставляя всем элементам группы G операторы (12), и получим представление Т, связанное с модулем М.
Учитывая отмеченное соответствие между модулями и представлениями, можно перевести на язык модулей основную терминологию теории представлений. Так, подмодулю М1 модуля М соответствует представление Т1, которое называется подпредставлением представления Т. Тривиальные подмодули модуля М – это сам модуль М и нулевой модмодуль О. Если все подмодули модуля М тривиальны, он называется неприводимым модулем, а соответствующее ему представление – неприводимым представлением. Если же модуль М имеет нетривиальный модмодуль, он называется приводимым модулем, ему соответствует приводимое представление.
4. Представление алгебр и модули
Обозначим через EndpV алгебру линейных операторов векторного пространства V над полем Р и пусть А – произвольная алгебра.
Определение 8. Представлением алгебры А называется сопоставление каждому элементу aA линейного оператора EndpV, причем должны выполняться следующие условия:
-
1
, где
- единичный оператор;
-
pap
; pP; aA;
-
a+b
+
; a, bA;
,
EndpV;
-
ab
; a, bA.
Определение 8 является иной формулировкой определения модуля над кольцом А, если кольцо является алгеброй над полем Р.
Определение 9. Модулем над алгеброй А называется абелева группа по сложению М, для которой определена операция умножения элементов из А на элементы из М: amM, aA, mM и при этом выполняются следующие условия:
-
(a+a)m=am+am;
-
(aa)m=a(am);
-
em=m;
-
a(m+m)=am+am;
-
(a)m=(am)=a(m), P.
Здесь дано определение левого модуля.
Теорема 1. Всякий левый (правый) модуль М над кольцом А, которым является алгебра, представляет собой также векторное пространство над полем Р, причем для всех aA, mM, P справедливы равенства
(ma)=(m)a=m(a); (am)=a(m)=(a)m.
2.5 Характеры представлений
1. Определение и свойства характеров
Определение 1. След матрицы А=(аij) размера nn есть сумма ее элементов, стоящих по главной диагонали:
TrA=a11+a22+…+ann (14)
Определение 2. След матрицы Т(g), представляющий элемент g в матричном представлении Т группы G, называется характеристикой элемента g в представлении Т и обозначается T(g).
Определение 3. Совокупность характеристик всех элементов g группы G, составленных для данного представления Т, называется характером представления Т и записывается как T. Если Т – матричное представление группы G над полем вещественных или комплексных чисел Р, то характеристика каждого элемента группы является вещественным или комплексным числом и, следовательно, характер есть отображение T группы G в поле Р, определяемое следующим образом:
T: GP: T(g)=TrT(g).
Свойство 1. Характеры эквивалентных представлений совпадают.
Свойство 2. Характер представления Т группы G постоянен на каждом классе сопряженных элементов: T(g-1hg)= T(h), g, hG.
Определение 4. Вектор x0 из векторного пространства V над числовым полем Р называется собственным вектором линейного оператора , действующего в этом пространстве, если он удовлетворяет соотношению
x=x, где - число, которое называется собственным значением (характеристическим числом) линейного оператора.
Условие того, что вектор х – собственный вектор записывается в виде матричного уравнения
(А - I)х = 0, (15)
где х – вектор-столбец с неизвестными координатами x1, x2, …, xn. Условием существования ненулевого решения системы (15) является равенство нулю его определителя:
|A - I| = 0. (16)
Это уравнение степени n относительно называется характеристическим или вековым уравнением матрицы А линейного оператора, а его корни называются собственными значениями матрицы А, они являются собственными значениями оператора .
Свойство 3. Если 1, 2, …, n – собственные значения линейного оператора , то T(g)=TrT(g)= 1+2+ …+n.
Так как здесь рассматриваем конечные группы, то имеет место следующее свойство.
Свойство 4. Если Т – представление группы G над полем Р, то для каждого элемента gG значение T(g) равно сумме корней из единицы степени, равной порядку элемента g.
Свойство 5. Если Т – представление группы G, то для каждого gG справедливо равенство T(g-1)= T(g).
Свойство 6. Если и
- характеры неприводимых представлений группы G, то
(17)
Равенство (17) называется соотношением ортогональности, для характеров, неприводимых представлений группы G.
Свойство 7. (второе соотношение ортогональности) Пусть T1, T2, …, Tm – все неэквивалентные представления группы G, K(a), K(b) – классы элементов группы G, сопряженных соответственно с a и b. Тогда