11 (682880), страница 12

Файл №682880 11 (Контроль качества сгорания топлива в методических нагревательных печах) 12 страница11 (682880) страница 122016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 12)

Газовый хроматограф «Сигма» , использованный для анализа атмосферы Венеры, состоял из двух, детекторов; неонового ионизационного детектора и детектора электронного захвата. Минимальная концентрация кислорода, которая была определена с помощью хроматографа, составила 4-10-5 % (об.).

Газохроматографический метод определения концентрации кислорода с помощью пламенно-ионизационного детектора про­водят при температуре 700—900 °С . Кислород превра­щают на угле в монооксид углерода, который затем в водороде на никелевом катализаторе восстанавливается до метана. Минимальная концентрация кислорода, определяемая с помощью де­тектора, составляет менее 10-4% (об.).

Хроматографические методы широко применяются в газовом анализе благодаря простоте и универсальности аппаратуры, а также возможности автоматизации.

Метод прямого измерения поглощения (оптико-абсорбционный метод)

Основы метода

Общие принципы и закономерности

Количественный абсорбционный анализ основан на существовании зависимости между концентрацией поглощающих атомов или молекул газа и изменением интенсив­ности прошедшего через анализируемую газовую среду зондиру­ющего излучения. Поглощение излучения происходит на резо­нансных частотах, определяемых в атомах их электронными энергетическими состояниями, а в молекулах – электронно - колебательно - вращательными состояниями. В первом случае спектр поглощения представляет собой набор отдельных спектральных линий, а во втором - набор полос, образованных совокупностью спектральных линий.[6]

В общем виде поглощение излучения в газе описывается зако­ном Бугера-Ламберта:

Iп=Io(1- exp[-k(v)L])(36)

где Iп, Iо- интенсивность поглощенного и зондирующего излучений; k(v)-спект­ральный коэффициент поглощения; L-толщина поглощающего слоя газа.

Поглощение газовой средой зондирующего излучения строго описывается выражением (36) лишь в условиях монохроматич­ности излучения, независимости коэффициента поглощения от частоты и концентрации поглощающих частиц и при отсутствии фотохимических реакций в газовой среде. Вычисление концентрации поглощающих частиц возможно путем измерения величины k (v), характеризующей интенсивность линии поглощения, и пара­метров контура линии поглощения. Для расчета необходимо также использовать в качестве исходных предпосылок те или иные теоретические приближения, описывающие форму спект­ральных линий в зависимости от условий эксперимента.

В реальных условиях прямое исследование контура линии поглощения представляет весьма сложную задачу. Поэтому на практике при определении концентраций атомов и молекул измеряют интегральную интенсивность линий (полос) поглоще­ния. Аналитический сигнал в этом случае определяется раз­ностью интенсивностей зондирующего излучения до и после кюветы с поглощающей газовой средой. Аналитическую связь между изменением интенсивности зондирующего излучения и концентрацией поглощающих частиц находят экспериментально и используют в виде градировочных графиков.

Основные способы повышения чувствительности и селектив­ности

Аналитические характеристики рассматриваемого варианта абсорбционного ана­лиза определяются прежде всего точностью регистрации и значением изменений интен­сивности прошедшего поглощающую среду зондирующего излучения и возможностью выделения отдельных линий (полос) поглощения определяемых компонентов газовых смесей. Реше­ние основных проблем анализа, связанных с улучшением чувстви­тельности и селективности метода, достигается путем увеличения толщины поглощающего слоя газа, повышения разрешающей способности приборов, а также использования различных прие­мов формирования и обработки аналитического сигнала.

Очевидность первого способа вытекает из выражения (36), второй способ оправ­дан стремлением полного выделения аналитической линии из регистрируемого спектра поглощения. Применение этих способов при анализе газовых сред дает хорошие резуль­таты. Однако в широкой прак­тике только такой-прямой-путь увеличения чувствительности и селективности не всегда возможен, да и реализация его требует применения довольно сложной аппаратуры. Поэтому остановим­ся более подробно на третьем способе, включающем различные приемы формирования и обработки аналитического сигнала.

Можно выделить по крайней мере два нетривиальных приема формирования ана­литического сигнала-дифференциальное поглощение и модуляция амплитуды сигнала. Преимущество таких приемов заключается в изменении характера сигнала и условий

измерения, а именно: переход от регистрации малых изменений амплитуды отно­сительно большого постоянного сигнала к регистрации либо амплитуды сигнала на нуле­вом фоне, либо меняющейся по периодическому закону амплитуды сигнала. Как известно, в этом случае может быть достигнута значительно большая точность измерений.

Существуют также две методики обработки сигнала: диффе­ренцирование перемен­ного аналитического сигнала и расчетный метод учета мешающих наложений.

Дифференциальный метод формирования аналитического сигнала имеет два вари­анта. Первый вариант - метод двух линий состоит в том, что поглощение измеряют на двух частотах и путем последовательного или одновременного пропускания через поглощающую газовую среду зондирующего излучения совпадающего с максиму­мом поглощения линии (полосы) определяемого компонента, и -с миниму­мом поглощения . Если известен дифференциальный коэффициент поглоще­ния то, измеряя отношение интенсивностей, можно рассчитать концентрацию поглощающих частиц по формуле:

где L- толщина поглощающего слоя газа.

Второй вариант - метод двух лучей - состоит в том, что зондирующее излучение с некоторой частотой, желательно совпадающей с максимумом поглощения определяемого компонента, пропускают через две идентичные кюветы, одна из которых - рабочая - за­полнена анализируемой газовой смесью, а вторая опорная (или сравнения) - газовой сме­сью известного состава. Разность сигналов опорного и рабочего каналов есть мера концен­трации определяемого компонента. Этот вариант метода обычно используют в автомати­ческих абсорбционных газоанализаторах, применяя электрическую или оптиче­скую ком­пенсации нулевого сигнала .

Модуляционный метод формирования аналитического сигнала состоит в том, что различными способами добиваются синусоидального изменения интенсивности излуче­ния попадающего на приемник излучения. Такой модуляции можно достичь как с помо­щью специальных устройств, помещаемых перед приемни­ком излучения, так и путем изменения частоты зондирующего излучения или частоты поглощения определяемых атомов или молекул.

В первом случае измеряемый сигнал зависит только от той части зондирующего излучения, которая соответствует (коррелирует) спектру поглощения определяемого ком­понента газовой смеси. Эта часть излучения выделяется специальными устройствами (коррели­рующими элементами), пропускающими излучение только на определенных участках спектра, соответствующих структуре спектра поглощения определяемых атомов или мо­лекул.

Такие элементы, помещенные перед приемником излучения, обеспечивают модуля­цию амплитуды регистрируемого сигнала. В сочетании с синхронным детектированием, т. е. регистрацией сигнала в момент, когда коррелирующий элемент выделяет только спектр поглощения определяемого компонента, корреля­ционные методики позволяют су­щественно ослабить влияние на результаты определения любых примесей, спектр поглоще­ния которых мало коррелирует по структуре с анализируемым.

В качестве коррелирующих элементов можно использовать специальные пластинки (маски) с чередующимися прозрачными и не прозрачными зонами, повторяющими положе­ние линий по­глощения в плоскости изображения спектра на выходе спектраль­ного прибора. Модуляция амплитуды сигнала в этом случае происходит за счет колебания маски в плоскости изображения спектра поглощения. Недостаток такой методики модуляции сигнала необходимость использования диспергирующей аппаратуры с хорошим разрешением и создания целого набора масок для анализа различных газов.

Модуляция амплитуды зондирующего излучения может про­изводиться также и с по­мощью специальных кювет с некоторым количеством определяемого газа за счет изменения в них давле­ния. В отличие от предыдущей схемы эта более универ­сальна, так как при смене аналитической задачи необходимо лишь заполнить кювету соот­ветствующим газом. Однако существенным ее недостатком является малая глубина моду­ляции амплитуды сигнала.

По-видимому, более перспективно использование в качестве коррелирующего эле­мента сканирующего интерферометра Фаб­ри-Перо, постоянная которого может быть вы­брана в со структурой полосы поглощения определяемого компо­нента газовой смеси. Длина волны максимума пропускания интерферометра сканируется за счет изменения положения одного из зеркал, а переход к определению нового компонента изме­нением базы интерфе­рометра.

Иной принцип заложен в методах, основанных на использова­нии явлений смещения частоты поглощения молекулами или частоты излучения источников при помещении их в магнитное (Зееман-эффект) или электрическое (Штарк-эффект) поля. В первом случае ис­пользуется явление расщепления энергетических уровней поглощающих или излучающих атомов или молекул во внешнем магнитном поле на три (нормальный Зееман-эффект) или большее число (аномальный Зееман-эффект) компонент. Если источник излу­чения или абсорбционная кювета помещена в переменное магнитное поле, то наблюдается соответствующее сканирование частоты зондирующего излучения относительно линии по­глощения или сканирование частоты линии поглощения относительно частоты зондирую­щего излучения. В этих случаях сигнал приемника модулируется по амплитуде с частотой изме­нения напряженности магнитного поля. Как правило, в перемен­ное магнитное поле помещают источник излучения , реже - абсорбционную кювету .

Расщепление линий поглощения в электрическом поле (Штарк-эффект) используют для определения полярных молекул, например, аммиака или диоксида серы . При этом в переменное электрическое поле помещают абсорбционную кюве­ту с анализируемым газом.

Остановимся на специальных способах обработки регистриру­емого сигнала.

Характеристики

Тип файла
Документ
Размер
5,7 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее