COLOR_mf (675850), страница 4

Файл №675850 COLOR_mf (Морфологический анализ цветных (спектрозональных) изображений) 4 страницаCOLOR_mf (675850) страница 42016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

, (14)

означает, что множества (14) не пересекаются и .

Чтобы сформулировать этот результат в терминах морфологического анализа, рассмотрим разбиение , в котором

(15)

и звездочка указывает на договоренность, принятую в (14). Определим оператор F, действующий из в по формуле , , i=1,...,q. Очевидно, F всегда можно согласовать с (14) так, чтобы включения и , i=1,...,q, можно было считать эквивалентными. 8

Теорема 2. Пусть - заданные векторы Rn. Решение задачи

наилучшего в приближения изображения f изображениями имеет вид , где - индикаторная функция множества . Множество определено равенством (15). Нелинейный оператор , как всякий оператор наилучшего приближения удовлетворяет условию F2=F, т.е. является пректором.

Замечание 2. Если данные задачи доступны лишь в черно-белом варианте, то есть заданы числа , i=1,...,q, которые можно считать упорядоченными согласно условию , то, как показано в [3], искомое разбиение X состоит из множеств

где , и имеет мало общего с разбиением (14).

Замечание 3. Выберем векторы fi, i=1,..,q единичной длины: , i=1,...,q. Тогда

. (16)

Множества (16) являются конусами в Rn , ограниченными гиперплоскостями, проходящими через начало координат. Отсюда следует, что соответствующее приближение изображения f инвариантно относительно произвольного преобразования последнего, не изменяющего его цвет (например ), в частности, относительно образования теней на f.

Замечание 4. Для любого заданного набора попарно различных векторов оператор F, приведенный в теореме 2, определяет форму изображения, принимающего значения соответственно на измеримых множествах (любого) разбиения X. Всякое такое изображение является неподвижной (в ) точкой F: , если , все они изоморфны между собой. Если некоторые множества из - пустые, или нулевой меры, соответствующие изображения имеют более простую форму.

Иначе говоря, в данном случае формой изображения является множество всех изображений, принимающих заданные значения на множествах положительной меры любого разбиения X, и их пределов в .

Теоремы 1 и 2 позволяют записать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями , в котором требуется определить как векторы , так и множества так, чтобы

.

Следствие 1.

Пусть Di ,i=1,...,N, - подмножества Rn (15), П - ортогональный проектор (13), , где . Тогда необходимые и достаточные условия суть следующие: , где , .

Следующая рекуррентная процедура, полезная для уточнения приближений, получаемых в теоремах 1,2, в некоторых случаях позволяет решать названную задачу. Пусть - исходные векторы в задаче (14*), - соответствующее оптимальное разбиение (14), F(1)- оператор наилучшего приближения и - невязка. Воспользовавшись теоремой 1, определим для найденного разбиения оптимальные векторы . Согласно выражению (13) , и соответствующий оператор наилучшего приближения П(1) (13) обеспечит не менее точное приближение f(×), чем F(1): . Выберем теперь в теореме 2 , определим соответствующее оптимальное разбиение и построим оператор наилучшего приближения F(2). Тогда . На следующем шаге по разбиению строим и оператор П(3) и т.д.

В заключение этого пункта вернемся к вопросу о построении исчерпывающего -измеримого разбиения X, отвечающего заданной функции . Выберем произвольно попарно различные векторы из f(X) и построим по формуле (15) разбиение Rn . Для каждого q=1,2,... образуем разбиение E(N(q)), множества , j=1,...,N(q), которого образованы всеми попарно различными пересечениями множеств из . Последовательность соответствующих разбиений X , i=1,...,N(q), q=1,2... -измеримы и является продолжением

5.2. Приближение изображениями, цвет которых постоянен на подмножествах разбиения поля зрения X.

Задано разбиение , требуется определить цвет и распределение яркостей наилучшего приближения на каждом Ai,i=1,...,N.

Для практики, как уже было отмечено, большой интерес представляет класс изображений (5), цвет которых не изменяется в пределах некоторых подмножеств поля зрения, и задачи аппроксимации произвольных изображений изображениями такого класса.

Запишем изображение (5) в виде

(17)

где .

Пусть A1,...,AN - заданное разбиение X, - индикаторная функция Ai, i=1,...,N. Рассмотрим задачу наилучшего в приближения изображения изображениями (17), не требуя, чтобы

(18)

Речь идет о задаче аппроксимации произвольного изображения изображениями, у которых яркость может быть произвольной функцией из , в то время, как цвет должен сохранять постоянное значение на каждом из заданных подмножеств A1,...,AN поля зрения X, (см. Лемму 3).

Так как

то минимум S (19) по достигается при

, (20)

и равен

(21)

Задача (18) тем самым сведена к задаче

. (22)

В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор

. (23)

Максимум (неотрицательной) квадратичной формы на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен и достигается, например, при

Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем9 (Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения изображениями g(×) (17) является изображение

(24)

Операторы ,i=1,...,N, и - нелинейные (зависящие от f(×) ) проекторы: Пi проецирует в Rn векторы на линейное подпространство , натянутое на собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению i,

; (25)

П проецирует в изображение на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

(19*).

Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi неотрицательны и среди них i - наибольшее.

Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f(×):

(26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению i. Чтобы определить следует решить задачу на собственные значения для оператора :

.

Поскольку rank =1, имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно i, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для n

Лемма 4. Для любого изображения решение (24) задачи (18) наилучшего приближения единственно и является элементом .

Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению i, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

,

составляющие содержание леммы. Действительно, если то согласно (23) , поскольку включение означает, что ; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

Так как матрица симметрическая и неотрицательно определенная ( ) она имеет n неотрицательных собственных значений , которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , . n

Характеристики

Тип файла
Документ
Размер
2,35 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее