3-4 (675759)
Текст из файла
Производная от обратной ф-ии.
тогда в точке х0 существует , равная
Доказательство:
1. Пусть и двум различным значениям х соответствует е различных значений y .
2. Пусть дифф. в точке х0 , тогда
Производная от сложной ф-ии.
Dh: Пусть:
тогда сложная ф-ия - дифф. в точке х0 и справедлива формула:
Доказательство:
3. - дифф. в точке х0 а значит непрерывна в этой точке
.
Односторонние производные.
Заменим в определении производной предел – односторонним пределом, получится определение односторонней производной.
Производная от параметрически заданной ф-ии.
Df: Ф-ия называется заданной параметрически, если ее аналитическое выражение может быть представлено в виде:
Dh: Пусть ф-ия задана параметрически, где и
дифф. в точке х0 , тогда
Доказательство: Предположим. что имеет обратную ф-ию
, тогда
- сложная ф-ия от х и определению сложной ф-ии имеет:
Производные высших порядков.
Df: Пусть ф-ия дифф. на Х , то есть дифф. в каждой т. Х .
Каждому значению Х соответствует единственное значение , т.е. получаем
как ф-ию, заданную на Х.
Если она окажется дифф. на Х, то мы можем вычислить следующую , которая будет называться второй и т.д.
Df: Производной n-го порядка от ф-ии называется первая производная от производной n-1 порядка.
Пример:
Теоремы о дифф. ф-ях.
Теорема Ферма: Пусть дифф. на
и наибольшее или наименьшее ее значение в т. х0 , тогда производная в этой точке равна нулю.
**************************
Доказательство:
Zm: Из доказательства т. Ферма следует: Пусть непрерывна на промежутке и внутренних точках этого промежутка принимает наибольшее и наименьшее значение, тогда если в этой точке ф-ия дифф., то
.
Тогда на существует т. х0 , в которой
*************
Доказательство:
Из непрерывности ф-ии на отрезке следует, что имеет на этом отрезке свои наименьшее(m) и наибольшее(M) значения.
Возьмем два случая:
Dh: Между двумя корнями ф-ии есть точка производной.
Теорема Лагранжа: Пусть ф-ия непрерывна на промежутке
, дифф. на
, тогда на
существует такая х0 такая, что верна формула:
**************************
Доказательство:
Рассмотрим вспомогательную ф-ию .
Sl: Пусть ф-ия дифф. на
, тогда для любой внутренней точки интервала справедлива формула Лагранжа:
Действительно ***************
Из дифф. ф-ии на следует ее непрерывность на
Тогда на существует т. х0 , для которой справедлива формула Коши:
Доказывается как теорема Лагранжа.
Приложение производной к исследованию ф-ий.
1. Исследование на монотонность.
Пусть дифф. на
, тогда справедливо:
2. Исследование на экстремум.
Df: т. х0 называется точкой локального минимума, если ф-ия непрерывна в этой точке и существует такая окрестность х0 , что для любого х
**************************
Исследование ф-ии на выпуклость графика.
**************************
Df: График ф-ии на
направлен выпуклостью вниз (вогнутый), если он расположен выше касательной, проведенной в любой точке
, а график ф-ии
- выпуклый, если он расположен ниже касательной, проведенной в любой точке
.
Df2: Точка х0 , в которой непрерывна, называется точкой перегиба, если она отделяет интервал выпуклости от интервала вогнутости.
Достаточные условия выпуклости ф-ии на интервале.
Пусть ф-ия дважды дифф. на
и
сохраняет на нем свой знак, то:
Асимптоты графика ф-ии.
В некоторых случаях, когда график ф-ии имеет бесконечные ветви, оказывается, что при удалении точки вдоль ветви к бесконечности, она неограниченно стремится к некоторой прямой. Такие прямые называют асимптотами.
.Вертикальные асимптоты – прямая называется вертикальной асимптотой графика ф-ии
в точке b , если хотя бы один из разносторонних пределов равен бесконечности.
Если ф-ия задана дробно-рациональным выражением, то вертикальная асимптота появляется в тех точках, когда знаменатель равен нулю, а числитель не равен нулю.
********************
Наклонная асимптота – прямая наклонная асимптота ф-ии
, если эта ф-ия представлена в виде
Необходимый и достаточный признак существования наклонной асимптоты:
Для существования наклонной асимптоты к графику ф-ии
необходимо и достаточно существование конечных пределов:
Доказательство: Пусть:
Пусть:
Следовательно существует асимптота.
Общая схема исследования ф-ий
-
По ф-ии
-
D(f)
-
E(f)
-
Непрерывность в области определения
-
Четность, нечетность.
-
Переодичность
-
Асимптоты
-
По первой производной
-
Экстремумы
-
Интервалы монотонности
По второй производной
-
Интервалы выпуклостей
-
Точки перегиба
Построение графика ф-ии.
Приложение производной к вычислению пределов.
(Правило Лопиталя).
Пусть:
то справедливо:
Доказательство:
1. Доопределим ф-ии и
в точке х0 так, чтобы они стали непрерывными, т.е.
ф-ия непрерывна на всей окрестности
2. применим т.Коши на интервале
или
, где ζ лежит между х и х0 следовательно
Zm:Если производная ф-ии удовлетворяет правилу Лопиталя, то можно вычислять последнюю несколько раз (2,3,4…), пока она удовлетворяет условию.Правило Лопиталя применимо, когда x0 – бесконечно удаленная точка.
Дифференциал ф-ии.
Из Df дифференцируемости следует, что приращение дифф. ф-ии можно представить в виде
Из равенства нулю предела следует, что - б.м. более высшего порядка малости, чем
, и
Поскольку - б.м. одного порядка малости.
- б.м. одного порядка малости
- б.м. эквивылентные, т.е.
**************
Zm1: и х – независимые переменные, т.е.
Zm1: для независимых переменных.
Свойства дифференциала:
Дифференцирование сложных ф-ий. Инвариантность в форме дифференциала
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.