183742 (629920), страница 2
Текст из файла (страница 2)
Рис. 16. График
.
Рис. 17. График оптимального управления
.
Выводы: Сравнивая полученные результаты с результатами полученными в ДЗ№2 по СУЛА, можно сделать вывод, что решения совпадают, с точностью до
.
3. Оптимальная L – проблема моментов
3.1 Оптимальная L – проблема моментов в пространстве «вход-выход»
Укороченная система данного объекта имеет вид:
,
где:
;
;
;
;
;
.
Полюса укороченной передаточной функции:
;
;
;
;
.
Заданы начальные и конечные условия:
,
,
.
Для определения начальных и конечных условий для
воспользуемся следующей формулой:
,
Где матрица
имеет следующий вид
,
где
,
.
ИПФ укороченной системы:
Составим фундаментальную систему решений:
ФСР:
.
Составим матрицу
.
, где
– матрица Вронского
,
Тогда
.
Составим моментные уравнения (связь между входом и выходом):
Моментные функции определяются по следующей формуле
Составим моментные функции:
Найдем моменты по следующей формуле:
.
Числовое значение найденных моментов:
Составим функционал качества, который имеет следующий вид:
при условии, что :
, т.е.
Выразим из данного условия
, тогда получим следующее равенство:
.
Подставляя полученное равенство в функционал и заменяя
их правыми частями получаем
Найдем частные производные
и приравняем их к нулю. Решая полученную систему уравнений, определяем оптимальные значения коэффициентов
, а
вычислим по формуле
.
Т.о. имеем:
Минимальная энергия:
Найдем управление по следующей формуле:
Тогда оптимальное управление
.
3.2 Оптимальная L – проблема моментов в пространстве состояний
Система задана в виде:
Решение ДУ имеет вид:
, при
имеем:
.
Составим моментные уравнения:
Подставляя необходимые данные в выше приведенные формулы, получим следующие моменты и моментные функции:
Числовое значение найденных моментов:
Моментные функции:
Заметим, что моменты и моментные функции совпадают с моментами и моментными функциями, найденными в пункте (а).
Из этого следует, что функционал, значения
, управление и минимальная энергия будут иметь точно такие же числовые значения и аналитические выражения, как и в пункте (3.1).
Оптимальное управление имеет вид:
Проверим правильность полученного решения.
Эталонные значения координат в начальный и конечный момент времени:
,
,
Найденные значения координат в начальный и конечный момент времени:
,
,
Вычислим погрешность полученных результатов:
,
,
Ниже представлены графики полученного решения с помощью скрипта Optimal_L_problem_moments.m.
Рис. 18. Графики фазовых координат системы при переходе из
в
.
Рис. 19. Графики выходных координат системы при переходе из
в
.
Рис.20. График оптимального управления
.
Выводы: Задача перевода системы из начальной точки в конечную с помощью L-проблемы моментов в пространстве состояний и в пространстве вход-выход была решена с точностью до 12-го знака после запятой. Результаты, полученные при переводе системы из начальной точки в конечную, полностью совпадают.
4. Нахождение оптимального управления с использованием грамиана управляемости (критерий – минимизация энергии)
Система имеет вид:
с начальными условиями:
,
.
Составим матрицу управляемости и проверим управляемость системы:
.
Составим грамиан управляемости для данной системы:
Найдем грамиан по формуле:
Тогда управление имеет вид:
.
или
Ниже представлен график оптимального управления полученного с помощью скрипта Gramian_Uprav.m.:
Рис.21. График оптимального управления
.
Графики фазовых координат аналогичны, как и в оптимальной L – проблеме моментов.
Сравним управление, полученное в начальной и конечной точках в пунктах 3 и 4 соответственно:
и
Выводы: Как видно, значения граничных управлений совпадают. А это значит, что задача перевода объекта из начального состояния в конечное решена с высокой степенью точности и с минимальной энергией.
Графическое сравнение оптимальных управлений из пунктов 3 и 4:
Рис.21. Сравнение графиков оптимального управления
.
5. Аналитическое конструирование оптимальных регуляторов (АКОР)
5.1 Стабилизации объекта управления на полубесконечном интервале времени
Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме
Необходимо получить закон управления
минимизирующий функционал вида
Начальные условия для заданной системы
Моменты времени
фиксированы. Матрицы
— симметричные неотрицательно определенные:
матрица
— положительно определенная:
Матричное дифференциальное уравнение Риккати имеет вид:
Если линейная стационарная система является полностью управляемой и наблюдаемой, то решение уравнения Риккати при
стремится к установившемуся решению
не зависящему от
и определяется следующим алгебраическим уравнением:
В рассматриваемом случае весовые матрицы
и
в функционале не зависят от времени.
Оптимальное значение функционала равно
и является квадратичной функцией от начальных значений отклонения вектора состояния.
Таким образом, получаем, что при
оптимальное управление приобретает форму стационарной обратной связи по состоянию
где
— решение алгебраического матричного уравнения Риккати.
5.1.1. Решение алгебраического уравнения Риккати методом диагонализации
Для решения данной задачи найдем весовые матрицы
и
:
Выберем произвольно
, тогда
Взяв значения
из решения задачи L – проблемы моментов получим:
Матрицы системы имеют вид:
,
.
Введем расширенный вектор состояния
.
Тогда матрица Z будет иметь следующий вид:
,
или в численном виде
.
Собственные значения матрицы
:
.
Зная собственные значения и собственные вектора матрицы Z, построим матрицу
По определению все решения должны быть устойчивы при любых начальных условиях
, т.е. при
. Чтобы не оперировать комплексными числами, осуществим следующий переход. Пусть:
Тогда матрица
формируется следующим образом:
.
Можно показать, что матрицу можно получить из прямой матрицы собственных векторов:
,
.
Установившееся решение уравнения Риккати, полученное с помощью скрипта Solve_Riccati_Method_Diag.m. имеет вид:
5.1.2 Решение алгебраического уравнения Риккати интегрированием в обратном времени до установившегося состояния
Весовые матрицы
и
такие же как и в пункте (5.1.1).
Матрицы
тоже аналогичны.
Запишем уравнение Риккати
.
Зная, что
, решаем уравнение методом обратного интегрирования на достаточно большом интервале (примерно 10 с.), получим установившееся решение с помощью скрипта
Solve_Riccati_Method_Revers_Integr.m.:
Рис.22. Графики решения уравнения Риккати.
Найдем разницу между решениями уравнения Риккати в пунктах 5.1.1 и 5.1.2:
Выводы: сравнивая решения полученные в пунктах 5.1.1 и 5.1.2 можно сказать, что решения уравнения Риккати первым и вторым методами совпадают с заданной точностью. Погрешность расхождения решений невелика.
Используя скрипт AKOR_stabilizaciya_na_polybeskon_interval.m получим коэффициенты регулятора, фазовые координаты системы и управление.
Рис.23. Графики коэффициентов регулятора обратной связи.
Рис.24. Графики фазовых координат.
Рис.25. График управления.
Выводы: т.к. решения уравнения Риккати методом диагонализации и интегрирования в обратном времени дают практически одинаковый результат, то можно считать, что задача АКОР – стабилизации на полубесконечном интервале решена с заданной точностью.
5.2 Стабилизации объекта управления на конечном интервале времени
Рассмотрим линейный объект управления, описываемый системой дифференциальных уравнений в нормальной форме
Начальные условия для заданной системы
Время стабилизации
.
Необходимо получить закон управления
минимизирующий функционал вида
Закон оптимального управления в данной задаче имеет вид
Матричное дифференциальное уравнение Риккати будет иметь следующий вид:
Если обозначить
то можно записать
Уравнение замкнутой скорректированной системы примет вид
Матрицы
заданы в пункте 5.1.1.
Весовые матрицы
и
имеют следующий вид:
,
.
Используя скрипт AKOR_stabilizaciya_na_konech_interval.m получили следующие результаты:
Рис.26. Графики решения уравнения Риккати.
Рис.27. Графики коэффициентов регулятора обратной связи.
Рис.28. Графики фазовых координат.
Рис.29. График управления.
Сравним, как стабилизируется система управления с постоянными и переменными коэффициентами регулятора обратной связи на начальном этапе:
Рис.30. Графики фазовых координат.
Выводы: из графиков видно, что система, у которой коэффициенты регулятора меняются со временем, стабилизируется не хуже, чем, система, у которой коэффициенты регулятора не изменяются.
5.3 Задача АКОР – стабилизации для компенсации
известного возмущающего воздействия
Рассмотрим систему вида












