181121 (628925), страница 7
Текст из файла (страница 7)
Общий вид передаточной функции замкнутой системы с П – регулятором по возмущению:
- диапазон изменения чатоты;
- замена p на комплексную величину i;
- знаменатель передаточной функции;
- действительная составляющая;
- мнимая составляющая;
Рисунок 18 – Годограф Михайлова разомкнутой системы с П – регулятором в интервале частот [0;2]
Изменим диапазон частоты: и покажем, что годограф разомкнутой системы с П – регулятором проходит все 5 квадрантов.
Рисунок 19 – Годограф Михайлова разомкнутой системы с П – регулятором в интервале частот [2;9,5]
Из рисунков 18 и 19 видно, годограф проходит 5 квадрантов, начав свое движение с положительной действительной полуоси, вращаясь последовательно против часовой стрелки нигде не обращаясь в нуль. Таким образом, замкнутая система с П – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Михайлова.
7.7.2 Замкнутая система с И – регулятором по возмущению
Общий вид передаточной функции замкнутой системы с ПИ – регулятором по возмущению:
- диапазон изменения чатоты;
- замена p на комплексную величину i;
- знаменатель передаточной функции;
- действительная составляющая;
- мнимая составляющая;
Рисунок 20 – Годограф Михайлова разомкнутой системы с И – регулятором в интервале частот [0;2,5]
Изменим диапазон частоты: и покажем, что годограф разомкнутой системы с И – регулятором проходит все 6 квадрантов.
Рисунок 21 – Годограф Михайлова разомкнутой системы с И – регулятором в интервале частот [2,5; 9,5]
Из рисунков 20 и 21 видно, годограф проходит 6 квадрантов, начав свое движение с положительной действительной полуоси, вращаясь последовательно против часовой стрелки нигде не обращаясь в нуль. Таким образом, замкнутая система с И – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Михайлова.
7.7.3 Замкнутая система с ПИ – регулятором по возмущению
Общий вид передаточной функции замкнутой системы с ПИ – регулятором по возмущению:
- диапазон изменения чатоты;
- замена p на комплексную величину i;
- знаменатель передаточной функции;
- действительная составляющая;
- мнимая составляющая;
Рисунок 22 – Годограф Михайлова разомкнутой системы с ПИ – регулятором в интервале частот [0;2,5]
Изменим диапазон частоты: и покажем, что годограф разомкнутой системы с ПИ – регулятором проходит все 6 квадрантов.
Рисунок 23 – Годограф Михайлова разомкнутой системы с ПИ – регулятором в интервале частот [2,5; 9,5]
Из рисунков 22 и 23 видно, годограф проходит 6 квадрантов, начав свое движение с положительной действительной полуоси, вращаясь последовательно против часовой стрелки нигде не обращаясь в нуль. Таким образом, замкнутая система с ПИ – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Михайлова.
8 ПОСТРОЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ
8.1 Постановка задачи. Методы решения
Чтобы окончательно убедиться в пригодности САУ нужно исследовать результаты их переходных процессов. Поэтому на завершающей стадии проектирования САУ всегда стремятся тем или иным способом получить оценки динамических характеристик системы и сравнить их с заданными.
Переходные процессы рассчитывают для замкнутых САУ по возмущающему и управляющему воздействиям. Если переходные процессы рассчитываются для замкнутых САУ по возмущению, то регулятор должен в течение переходного процесса скомпенсировать это возмущение, а объект – вернуться в исходное состояние, в котором он был до приложения возмущения. Если же переходные процессы рассчитываются для замкнутых САУ по управлению, то регулятор должен отработать управляющее воздействие и регулируемая величина на выходе объекта должна принять заданное значение.
Для построения переходных процессов, используя при этом любые методы (аналитические, численные), необходимо иметь математическую модель замкнутой системы в форме передаточной функции или дифференциального уравнения (ДУ).
Если передаточная функция замкнутой системы приведена к ДУ с произвольной правой частью, то аналитическое решение ищется в следующей последовательности:
– находятся корни характеристического уравнения;
– строится частное решение с неопределенными коэффициентами;
– полученное частное решение подставляется в исходное уравнение;
– после приравнивания коэффициентов при одинаковых степенях находятся все неопределенные коэффициенты;
– записывается искомое частное решение.
Это решение и будет являться зависимостью выходной координаты системы от времени.
При использовании численных методов для построения переходных процессов необходимо:
– передаточную функцию замкнутой системы преобразовать в ДУ;
– ДУ порядка привести к нормальной системе, состоящей из
ДУ первого порядка;
– задать уравнение для возмущающего воздействия;
– выбрать один из численных методов для решения полученной системы;
– составить программу на ЭВМ для решения полученной системы ДУ и построения переходных процессов.
Для решения поставленной задачи используются следующие методы:
1) Метод Эйлера;
Интегрирование ДУ этим методом аналогично вычислению определенного интеграла по методу левых прямоугольников:
.
2) Модифицированный метод Эйлера
Аналогично методу средних прямоугольников:
.
Недостатком данного метода являются двойные затраты на решение.
3) Усовершенствованный метод Эйлера-Коши
Аналогично методу трапеций:
.
4) Метод Эйлера – Коши с итерациями
В данном методе приближенное решение используется для уточнения этого же решения (подстановка в правую часть), эта итерация продолжается до обеспечения требуемой точности; если точность не достигается за заданное количество итераций, то либо нужно изменить дополнительное число итераций, либо уменьшить требуемую точность;
5) Методы с автоматическим выбором величины шага (адаптивные)
Во всех численных методах точность зависит от величины шага, в то же время искомое решение изменяется с разной скоростью внутри интервала. Для численных методов необходимо выбрать разный шаг на разных участках изменения функции, чтобы обеспечить на них одинаковую точность. В этих методах решение на каждом шаге находится дважды: с исходным шагом и с шагом, в два раза меньшим. Эти два решения сравниваются, и если точность не достигнута, то исходный шаг уменьшается вдвое и процедура повторяется; таким образом, каким бы ни был исходный шаг, машиной выберется шаг в соответствии с заданной точностью. В такой процедуре шаг может быть выбран исключительно малым и прохождение всего интервала с таким шагом может оказаться неэффективным, поэтому на следующем шаге выполняется обратная процедура. Решение находится с этим же шагом и с шагом в два раза большим; если точность достаточна, то шаг увеличивается еще вдвое. Таким образом, величина шага однозначно определяется величиной дополнительной погрешности получения решения;
6) Метод Рунге – Кутта:
.
7) Экстраполяционные методы
В основе этих методов лежит получение решения в последующей точке через найденные решения в предыдущих точках;
8) Методы решения для жестких систем (метод Гира, метод Штера, метод Булирша)
Для этого вычисляется матрица Якоби:
.
8.2 Построение переходных процессов в замкнутых системах по возмущению
8.2.1 Система с П – регулятором
Запишем передаточную функцию данной системы:
.
По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ пятого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.
Запишем нормальную систему и решим её:
Полученные результаты отобразим на рисунке 24.
Рисунок 24 – График переходного процесса в замкнутой системе с П – регулятором по возмущению
8.2.2 Система с И – регулятором
Запишем передаточную функцию данной системы:
.
По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ шестого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.
Запишем нормальную систему и решим её:
Полученные результаты отобразим на рисунке 25.
Рисунок 25 – График переходного процесса в замкнутой системе с И – регулятором по возмущению
8.2.3 Система с ПИ – регулятором
Запишем передаточную функцию данной системы:
.
По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ шестого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.
Запишем нормальную систему и решим её:
Полученные результаты отобразим на рисунке 26.
Рисунок 26 – График переходного процесса в замкнутой системе с ПИ – регулятором по возмущению
8.3 Построение переходных процессов в замкнутых системах по управлению
8.3.1 Система с П – регулятором
Запишем передаточную функцию данной системы:
По аналогии с п.5 преобразуем полученную передаточную функцию в ДУ пятого порядка и приведем его к нормальной системе. После этого зададим нормальную систему в виде вектора.
Запишем нормальную систему и решим её: