181121 (628925), страница 6

Файл №628925 181121 (Линейные автоматические системы регулирования) 6 страница181121 (628925) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Используя правила из таблицы 20, составим таблицу 21

Таблица 21 – Критерий Рауса для системы с П – регулятором

Коэффициенты ri

Номера столбцов

1

2

3

4

0,004

0,378

1,654

0

0,056

1,723

3,178

0

0,071

0,256

1,428

0

0

0,219

1,410

3,178

0

0

0,182

0,850

0

0

0

1,659

3,178

0

0

0

0,267

0

0

0

0

Из таблицы 21 видно, что замкнутая система с П – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.

7.3.2 Замкнутая система с И – регулятором

Аналогично правилам таблицы 20 составим таблицу 22 для замкнутой системы с И – регулятором, характеристическое уравнение которого имеет вид:

Таблица 22 – Критерий Рауса для системы с И – регулятором

Коэффициенты ri

Номера столбцов

1

2

3

4

0,004

0,387

2,308

0,530

0,056

1,616

0,847

0

0,071

0,272

2,248

0,530

0

0,206

1,153

0,738

0

0

0,236

2,074

0,530

0

0

0,556

0,443

0

0

0

4,682

0,530

0

0

0

0,836

0

0

0

0

Из таблицы 22 видно, что замкнутая система с И – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.


7.3.3 Замкнутая система с ПИ – регулятором

Аналогично правилам таблицы 20 составим таблицу 23 для замкнутой системы с ПИ – регулятором, характеристическое уравнение которого имеет вид:

Таблица 23 – Критерий Рауса для системы с ПИ – регулятором

Коэффициенты ri

Номера столбцов

1

2

3

4

0,004

0,382

1,979

1,006

0,056

1,673

1,093

0

0,071

0,263

1,901

1,006

0

0,213

1,268

0,879

0

0

0,207

1,693

1,006

0

0

0,749

0,126

0

0

0

13,437

1,006

0

0

0

0,125

0

0

0

0

Из таблицы 23 видно, что замкнутая система с ПИ – регулятором устойчива, так как выполняется необходимое условие устойчивости по критерию Рауса.


7.4 Проверка устойчивости систем по частотному критерию Найквиста


7.4.1 Разомкнутая система с П – регулятором

Для исследования системы по критерию Найквиста образуем передаточную функцию, построим годограф АФХ разомкнутой системы и исследуем ее поведение в окрестности точки с координатами .

Передаточная функция данной системы образуется следующим образом:


- диапазон изменения чатоты;



- замена p на комплексную величину i;


- передаточная функция разомкнутой системы;



- действительная составляющая;



- мнимая составляющая;




Рисунок 15 – Годограф Найквиста П – регулятора

Из рисунка 15, видно, что годограф не охватывает точку с координатами , следовательно, разомкнутая система с П – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.

7.4.2 Разомкнутая система с И – регулятором

Передаточная функция данной системы образуется следующим образом:


- диапазон изменения чатоты;



- замена p на комплексную величину i;



Рисунок 16 – Годограф Найквиста И – регулятора

Из рисунка 16, видно, что годограф не охватывает точку с координатами , следовательно, разомкнутая система с И – регулятором является неустойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.

7.4.3 Разомкнутая система с ПИ-регулятором


- диапазон изменения чатоты;



- замена p на комплексную величину i;


- передаточная функция разомкнутой системы;



- действительная составляющая;



- мнимая составляющая;





Рисунок 17 – Годограф Найквиста ПИ – регулятора

Из рисунка 17, видно, что годограф не охватывает точку с координатами , следовательно, разомкнутая система с ПИ – регулятором является устойчивой, так как выполняется необходимое и достаточное условие устойчивости по критерию Найквиста.

7.5 Проверка устойчивости САУ по корням характеристического уравнения

Для определения устойчивости системы необходимо вычислить корни полинома знаменателя (характеристического уравнения). Для этого выделим полином знаменателя, воспользовавшись системой аналитических преобразований и образуем вектор коэффициентов этого полинома A3. Для нахождения воспользуемся функцией polyroots(X).

7.5.1 Замкнутая система с П – регулятором по возмущению

Составим вектор коэффициентов:





Анализ корней показывает, что система устойчива, поскольку все корни расположены в левой полуплоскости.

7.5.2 Замкнутая система с И – регулятором по возмущению

Составим вектор коэффициентов:





Анализ корней показывает, что система устойчива, поскольку все корни расположены в левой полуплоскости.

7.5.3 Замкнутая система с ПИ – регулятором по возмущению

Составим вектор коэффициентов:





Анализ корней показывает, что система устойчива, поскольку все корни расположены в левой полуплоскости.

7.6 Проверка устойчивости САУ по критерию устойчивости Гурвица

Система, описываемая передаточной функцией:

,

или линейным дифференциальным уравнением:

,

будет устойчивой, если все корни ее характеристического уравнения имеют отрицательные действительные части. А для этого необходимо и достаточно, чтобы определитель А. Гурвица (1895 г.), составленный в следующем виде:

,

и все его диагональные миноры:

; ,

и.т.д. были одного знака с . При выборе знака определитель Гурвица и все его диагональные миноры должны бать положительны.

Как следствие этого, необходимое условие устойчивости будет следующие, что все коэффициенты характеристического уравнения должны быть положительны.


7.6.1 Замкнутая система с П – регулятором по управлению

Общий вид передаточной функции замкнутой системы с П – регулятором по управлению:

















По результатам расчёта все миноры определителя Гурвица , , и вместе с коэффициентом положительны, значит замкнутая система, описываемая этой передаточной функцией, устойчива.


7.6.2 Замкнутая система с И – регулятором по управлению

Общий вид передаточной функции замкнутой системы с И – регулятором по управлению:





















По результатам расчёта все миноры определителя Гурвица , , и вместе с коэффициентом положительны, значит замкнутая система, описываемая этой передаточной функцией, устойчива.


7.6.3 Замкнутая система с ПИ – регулятором по управлению

Общий вид передаточной функции замкнутой системы с ПИ – регулятором по управлению:





















По результатам расчёта все миноры определителя Гурвица , , и вместе с коэффициентом положительны, значит замкнутая система, описываемая этой передаточной функцией, устойчива.

7.7 Проверка устойчивости САУ по частотному критерию Михайлова

Для исследования устойчивости замкнутой системы по критерию Михайлова строится годограф вектора характеристического уравнения знаменателя замкнутой системы при изменении частоты от до . Для устойчивости системы необходимо и достаточно, чтобы годограф Михайлова при изменении частоты от до , начав свое движение с положительной действительной полуоси и вращаясь против часовой стрелки, последовательно проходил квадрантов, нигде не обращаясь в нуль (где - порядок характеристического уравнения).

Таким образом, для исследования системы на устойчивость по критерию Михайлова необходимо построить годограф знаменателя передаточной функции замкнутой системы и по его виду оценить ее устойчивость.

Необходимо заметить, что для адекватного отображения годографа в области малых и больших частот часто приходиться строить несколько вариантов этого годографа в различных диапазонах частот, чтобы просмотреть его поведение во всем диапазоне.

7.7.1 Замкнутая система с П – регулятором по возмущению

Характеристики

Тип файла
Документ
Размер
9,83 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6597
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее