150578 (621293)
Текст из файла
Министерство образования и науки Украины
ХАРЬКОВСКИЙ НАЦИНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ
Кафедра МЭПУ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
к курсовой работе по дисциплине
“Материалы электронной техники”
на тему: “Полупроводниковые материалы”
Работу выполнила Руководитель:
ст.гр. ЭЛ-05-1 проф. Слипченко Н.И.
Марокко А.Р.
Харьков 2005
РЕФЕРАТ
Пояснительная записка: 39 с., 9 рис., 1 табл., 11 источников.
Объект исследования – полупроводниковые материалы.
Цель работы – повторение и закрепление знаний об основных свойствах полупроводниковых материалов, практическое применение полученных знаний путем решения задачи.
Полупроводниковые материалы получили широкое применение в электротехнике, в связи с этим предполагается углубленное изучение свойств.
Ключевые слова: полупроводник, полупроводниковые соединения, гальваномагнитные явления, эффект Холла, подвижность носителей, заряд.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1 СУТЬ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ
1.1 Описание гальваномагнитных явлений
1.2 Эффекты Холла, Эттингсгаузена и Нернста
2 ПОЛУПРОВОДНИКОВЫЕ СОЕДИНЕНИЯ ТИПА АIIIВV
2.1 Закономерности образования. Структура и химическая связь
2.2 Получение соединений
2.3 Физико-химические и электрические свойства
2.4 Примеси и дефекты структуры
2.5 Излучательная рекомбинация
2.6 3акоиомерности изменения свойств в зависимости от состава
2.7 Изопериодные гетероструктуры
2.8 Применение соединений АIIIВV
2.9 Арсенид галлия GaAs
2.10 Фосфид галлия
3 ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКАХ
3.1 Что такое подвижность
3.2 Некоторые свойства подвижности носителей заряда
3.3 Измерение подвижности носителей заряда
3.3.1 Метод тока Холла
3.3.2 Метод геометрического магнитосопротивления
ЗАКЛЮЧЕНИЕ
ПЕРЕЧЕНЬ ССЫЛОК
ВВЕДЕНИЕ
К полупроводникам относятся материалы, свойства которых частично схожи со свойствами проводников, частично со свойствами диэлектриков. К ним относится большое количество веществ с электронной электропроводностью.
Основной особенностью полупроводников является их способность изменять свои свойства под влиянием различных внешних воздействий (изменение температуры, приложение электрического или магнитного полей и т.д.). Свойства полупроводников сильно зависят от содержания примесей. С введением примеси изменяется не только значение проводимости, но и характер её температурной зависимости.
Электрический ток в полупроводниках связан с дрейфом носителей заряда. Появление носителей заряда в полупроводниках определяется химической частотой и температурой.
Среди полупроводниковых материалов электронные полупроводники, полупроводниковые химические соединения и твердые растворы. Электрические свойства полупроводников определяются зонной структурой и содержанием примесей.
При любой температуре, отличной от абсолютного нуля, в полупроводнике за счет теплового возбуждения происходит генерация свободных электронов и дырок. Однако с процессом генерации обязательно протекает обратный процесс – рекомбинации носителей заряда. Основной характеристикой рекомбинации является время жизни.
Основным материалов полупроводниковой электроники является кремний. Для изготовления полупроводниковых приборов и устройств микроэлектроники используют как монокристаллические, так и поликристаллические материалы
1 СУТЬ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ В ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛАХ
-
Описание гальваномагнитных явлений
К гальваномагнитным явлениям относят совокупность эффектов, связанных с воздействием магнитного поля на электрические свойства веществ, в которых возникает электрический ток.
Проводимость анизотропного кристалла является в общем случае тензором, и гальваномагнитные явления можно трактовать как изменение этого тензора под действием магнитного поля, приводящего к искривлению траекторий электронов между столкновениями
Рисунок 1.1 – Эффект Холла
с радиусом кривизны R = m*nvдр/eB0. Особенно сильно сказывается влияние магнитного поля при критических значениях индукции Во, при которых радиус R становится величиной одного порядка с длиной свободного пробега Λе. В этом случае искажение траектории настолько велико, что изменяется механизм рассеяния электронов. Критическая напряженность поля для большинства веществ очень высока (Нкp да 107 — 1011 А/м), и в реальных полях (Н = 106 А/м) искривление траекторий электронов незначительно. Однако у ряда веществ (например, у Bi) значение Нкр значительно ниже, и магнитное поле резко изменяет тензор проводимости.
Гальваномагнитные явления подразделяют на продольные и поперечные в зависимости от того, в каком направлении они проявляются относительно вектора электрического поля. К поперечным гальваномагнитным явлениям относят эффекты Холла и Эттингсгаузена, к продольным — изменение продольного сопротивления в магнитном поле и эффект Нернста.
1.2 Эффекты Холла, Эттингсгаузена и Нернста
Эффект Холла заключается в возникновении поперечного электрического поля εн в кристалле, по которому протекает ток I, при помещении его во внешнее магнитное поле Во, перпендикулярное I (рис. 1.1). Поле Six перпендикулярно I и Во, а его напряженность пропорциональна току и индукции магнитного поля.
Рассмотрим движение электронов на примере рис. 1.1. Под действием электрического поля они движутся справа налево, однако сила Лоренца
Fл = -e[vдрB0] смещает их к передней стенке образца, создавая тем самым поперечный градиент заряда и связанное с ним электрическое поле εн . Поперечное поле εн в свою очередь ограничивает приток электронов к передней стенке, и в состоянии равновесия сила, с которой оно воздействует на электрон, равна отклоняющей силе Лоренца:
-е εн = evдрB0 (1.1)
Отсюда
εн = - vдр B0 (1.2)
Теперь уже вектор тока I, направление которого не изменилось, не параллелен вектору суммарного электрического поля ε + εн. Угол между ними, называемый углом Холла Он, определяется равенством
Ток в поперечном сечении образца S
I = js — jbd (1.4)
Учитывая, что j = envдр , можно получить выражение для поперечной разности потенциалов (э.д.с. Холла):
VH=b εн = - b (i/en) B0 = - b (I/bd)(B0/en) = - (1/en)(IB0/d) (1.4)
При выводе формулы (1.4) предполагалось, что все электроны имеют одинаковые дрейфовые скорости, и не учитывался механизм их рассеяния в кристалле. Более строгое выражение для э.д.с. Холла с учетом распределения электронов по скоростям и связанного с этим: изменения времени релаксации записывается в виде
VH = - (A/en)(IB0/d) (1.5)
или, если ввести постоянную Холла RH = - A/(en),
Константа А определяется механизмом рассеяния электронов:
где r — имеет то же значение, что и в (9.58); Г — гамма-функция.
В атомных кристаллах A = 1.18, в решетках с ионизированными примесями A = 1.93, в металлах и сильно вырожденных полупроводниках, у которых в электропроводности участвуют лишь, электроны с энергией, близкой к EF, т. е. имеющие практически одинаковые скорости, А = 1.
Величина |Rn| не зависит от индукции магнитного поля и лишь в очень сильных полях уменьшается от А/(пе) до 1/(пе) при любом механизме рассеяния. У металлов RH имеет порядок 10-10 м3/Кл, у полупроводниковых соединений она возрастает вплоть до 102 м3/Кл (Si). Аномально большие значения постоянной Холла у металлов V группы (Bi, Sb, Аs)—до 106 м3/Кл.
Электроны и дырки отклоняются при тех же направлениях векторов I и В0, к одной и той же грани образца, поэтому в дырочном; и; электронном полупроводниках направления εн противоположны. Постоянную Холла Rn принято считать отрицательной при электронном типе электропроводности и положительной — при дырочном. В частности, постоянная Холла положительна у ряда: металлов, например Cd, Zn. Это объясняется тем, что зона проводимости подобных веществ заполнена почти полностью и оставшиеся незаполненные уровни ведут себя как положительные заряды — дырки. При наличии носителей зарядов обоих знаков
В зависимости от концентрации и подвижности носителей заряда Rn, как следует из (1.8), может быть больше или меньше нуля. В собственном полупроводнике п = р и
так что при mp = mn , RH = 0. Для веществ с одним типом носителей заряда o = enm, и |Rn| = A/en, следовательно, измерив постоянную Холла и проводимость, можно найти подвижность носителей заряда:
m = (o |RH|)/A (1.10)
Таким образом, исследования эффекта Холла позволяют составить представление о знаке и концентрации носителей заряда в веществе. Из анализа температурной зависимости RH можно получить сведения о ширине запрещенной зоны и структуре примесных уровней, а измерения o дают возможность найти также подвижность носителей заряда.
В выражении для силы Лоренца мы пренебрегли тепловой составляющей скорости и считали, что все электроны обладают одинаковой средней скоростью. В этом предположении выведено условие равенства сил электрического и магнитного полей (1.1). Однако реальный электронный газ в кристалле имеет некоторое распределение по скоростям и условие (1.1) выполняется лишь для небольшой части электронов. На более быстрые электроны действует большая отклоняющая сила магнитного поля, и они могут преодолеть силы поперечного электрического поля Холла. Медленные же электроны, на которые действует меньшая отклоняющая сила Лоренца, не могут преодолеть силу еεн и смещаются к противоположной стенке образца. В результате происходит разделение электронов в поперечном направлении в зависимости от значения их скорости, и вследствие обмена энергией электронов с решеткой (быстрые электроны отдают энергию, а медленные увеличивают ее за счет решетки) в поперечном направлении появляется градиент температуры (аффект Эттингсгаузена) VT = P[IВ0], где
Р — коэффициент Эттингсгаузена. Поперечный перепад температур невелик— обычно он не превышает долей градуса.
Помещение вещества в магнитное поле изменяет продольную компоненту проводимости. Это явление называют магнетосопротивлением (магниторезистивным эффектом, эффектом Гаусса). Магнитное поле вызывает искривление траекторий электронов проводимости, и если вдоль искривленной траектории длина свободного пробега останется прежней, то в направлении электрического поля она уменьшится, а следовательно, уменьшится и проводимость. Можно показать, что изменение проводимости связано с величиной магнитного поля и подвижностью носителей заряда соотношением
Δo /o = - C(mnB0)2 (1.11)
Как видно из формулы (1.11), магнетосопротивление в отличие от эффекта Холла является четной функцией относительно магнитного поля — изменение направления вектора Во на противоположное не влияет на Да. Коэффициент С определяется механизмом рассеяния носителей заряда и равен (9/16)π я для атомных и (27/64)π я для ионных кристаллов. Для примесных полупроводников С = π /10 в атомных решетках и С = 0,96 — в ионных. Измеряя зависимость Δo /o от величины магнитного поля, можно определить подвижность носителей заряда.
Значения Δo /o для металлов невелики, однако у висмута это отношение может достигать 200% и по его изменению можно измерять магнитные поля. Для полупроводников отношение Δo /o изменяется в широких пределах в зависимости от их типа (от средних значений 10-2 – 10-1 до нескольких единиц). В полях напряженностью выше 106 А/м зависимость Δo /o от В0 отклоняется от квадратичной и Δo /o ~ Вm0, где 1 < m < 2.
Распределение электронов по скоростям сказывается на степени их смещения магнитным полем. Медленные электроны сильнее «закручиваются» и не могут пройти вдоль всего образца в отличие от более быстрых электронов, тем самым создается продольный градиент температуры ∂Т/∂х ~ В20y Ix (эффект Нернста).
Гальваномагнитные эффекты широко используют в установках для лабораторных исследований и в ряде технических устройств. Сюда следует отнести, прежде всего, измерения параметров электронного газа, о которых упоминалось ранее. Широкое применение нашел эффект Холла в устройствах для измерения напряженности постоянного и переменного (до 1012 Гц) магнитных полей (магнитометры), силы тока (по создаваемому им магнитному полю), электрической мощности (ваттметры) и т. д., а также в некоторых преобразовательных устройствах. В качестве датчиков Холла используют различные полупроводниковые соединения с большими (10-5 - 102 м3/Кл) значениями RH — Ge, Si, InAs, InSb, HgSe, HgTe, Cd3As2, InAsP и др. Ведутся исследования по созданию охлаждающих устройств на основе эффекта Эттингсгаузена и уже получены перепады температуры до 100°.
2 ПОЛУПРОВОДНИКОВЫЕ СОЕДИНЕНИЯ ТИПА АIIIВV
2.1 Закономерности образования. Структура и химическая связь
Соединения АIIIВV образуются в результате взаимодействия атомов III подгруппы периодической системы (В, Al, Ga, In) с элементами V подгруппы (N, P, As, Sb). Соединения АIIIВV принято классифицировать по металлоидному элементу. Соответственно различают нитриды, фосфиды, арсениды и антимониды.
За исключением нитридов соединения АIIIВV Кристаллизуются в решетке цинковой обманки кубического типа (сфалерит). Для нитридов характерна решетка гексагонального типа (вюрцит). В решетке того и другого типа каждый атом элемента III группы находится в тетраэдрическом окружении четырех атомов элемента V группы и наоборот.
Для соединений АIIIВV характерен особый тип химической связи, называемой донорно-акцепторной. Из четырех ковалентных связей, которыми каждый атом встраивается в решетку, три образуются обобществлением валентных электронов атомов АIII и ВV, а четвертая связь осуществляется неподеленной парой валентных электронов атомов ВV .
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.