150578 (621293), страница 3
Текст из файла (страница 3)
Изменение ΔЕ0 у твердых растворов сопровождается смещением спектров оптического поглощения и пропускания, люминесценции и фоточувствителькости. В ряде систем при определенном соотношении между компонентами можно получить качественно новые сочетания свойств. Так, в твердых растворах GaAs1-yPy и А1xGa1-xAs (с х и у порядка 0,3...0,4) сочетается достаточно широкая запрещенная зона (ΔЕ0>1,7 эВ) с высоким квантовым выходом межзонной излучательной рекомбинации. Такие материалы используются для создания электролюминесцентных источников красного свечения (светодиодов и лазеров). Твердые растворы GaxIn1-xP с х=0,5...0,7 обладают эффективной электролюминесценцией в желто-зеленой области спектра.
Рис. 2.1
Получение однородных твердых растворов заданного состава представляет трудную технологическую задачу. Методами кристаллизации из расплава удается получить лишь однородные поликристаллические слитки. Монокристаллические слои твердых растворов, используемых в приборных структурах, получают исключительно методами эпитаксии. Эпитаксию твердых растворов GaAS1-yPy осуществляют на подложках GaAs или GaP из ПГФ. Наиболее совершенные эпитаксиальные слои AlxGa1-xAs, AlxGa1-xSb, GaxIn1-xAs, GaxIn1-xP получают методом ЖФЭ с использованием Ga или In в качестве растворителя.
2.7 Изопериодные гетероструктуры
Твердые растворы открывают широкие возможности создания гетеропереходов и приборов на их основе. Гетеропереход - контакт двух полупроводников с различной ΔЕо. Для получения гетеропереходов со свойствами идеального контакта необходимо выполнить ряд условий совместимости материалов по механическим, кристаллохимическим и термическим свойствам. Решающим критерием при выборе материалов контактной пары является соответствие периодов их кристаллических решеток и ТКЛР. Особенность электрических свойств гетеропереходов заключается в преимущественной инжекции носителей заряда из широкозонного полупроводника в узкозонный.
Если компоненты гетеропары обладают взаимной растворимостью во всем интервале концентраций, то появляется уникальная возможность создавать гетеропереходы между химическим соединением АС и твердым раствором на его основе - AxB1-xС. Это обстоятельство позволяет плавно изменять свойства материалов на контактной границе, что важно при изготовлении ряда приборов оптоэлектроники - гетеролазеров, светодиодов и быстродействующих фотоприемников (источников и приемников излучения).
Среди полупроводников типа АIIIВV наилучшими парами для создания идеальных гетеропереходов являются системы GaAs - AlxGa1-xAs и GaSb - AlxGa1.xSb. Преимущества указанных гетеропар заключаются в том, что период решетки в твердых растворах слабо зависит от состава и близок к периоду решетки бинарного соединения (соответственно, GaAs и GaSb).
В качестве примера можно рассмотреть схему лазера с двойной гетероструктурой (рис. 2.2). Область рекомбинации носителей заряда и светового излучения сосредоточены в среднем узкозонном активном слое
(p-GaAs), заключенном между двумя широкозонными эмиттерами
(AlxGa1-xAs). При подаче прямого напряжения в такой структуре имеет место двухсторонняя инжекция носителей заряда в активный слой. Благодаря эффективному возбуждению удается достигнуть высокого квантового выхода люминесценции и снизить пороговую плотность тока, требуемую для генерации когерентного излучения. Снижение порогового тока увеличивает срок службы приборов и позволяет осуществить непрерывный режим генерации при Т=300 К, который не удается реализовать в инжекционных лазерах на гомогенных структурах с р-n-переходом.
При использовании четырехкомпонентных твердых растворов типа AxB1-xCyD1-y возникают дополнительные степени свободы для варьирования параметрами сопрягаемых материалов. Наиболее интересными и изученными являются твердые растворы GaxIn1-xAs1-yPy , в которых имеет место замещение по обеим подрешеткам при сохранении общей стехиометрии, т.е. равенство суммарных количеств атомов металла и металлоида. В качестве исходных компонентов такого твердого раствора можно рассматривать четыре бинарных соединения: GaP, InP, GaAs, InAs.
Особый интерес представляют твердые растворы GaxIn1-xAs1-yPy с изопериодическим замещением к InP. В зависимости от состава их ΔЕ0 может изменяться в пределах от 0,75 до 1,35 эВ. Инжекционные лазеры на основе гетёропары InP – GaxIn1-xAs1-yPy перспективны для применения в ВОЛС, поскольку спектральный диапазон их излучения соответствует минимальным оптическим потерям кварцевого волокна.
2.8 Применение соединений АIIIВV
Особый интерес к этой группе материалов вызван потребностями оптоэлектроники в быстродействующих источниках и приемниках излучения. Инжекционные лазеры и светодиоды на основе соединений АIIIВV характеризуются высокой эффективностью преобразования электрической энергии в электромагнитное излучение.
Большой набор значений ΔЕ0 у полупроводников типа АIIIВV позволяет создавать на их основе различные виды фотоприемников, перекрывающих широкий диапазон спектра. Среди них наибольшее распространение получили фотодиоды и фотоэлементы. GaAs является одним из лучших материалов для применения в солнечных батареях. InSb используется для изготовления приемников ИК – излучения, обладающих фоточувствительностью вплоть до x =7 мкм.
Соединения АIIIВV позволяя создавать эффективные фотоумножители, работающие на основе внешнего фотоэффекта, фотокатоды и эмиттеры вторичных электронов. Например, фотокатоды из GaAs р-типа, активированного пленкой СsО2 для снижения работы выхода электронов, обладает квантовым выходом в ближней ИК-области спектра на несколько порядков выше, чем у фотокатодов из традиционных материалов.
Токовая неустойчивость в сильных электрических полях используется для создания генераторов СВЧ - колебаний, генераторов Ганна. Кроме GaAs, перспективными материалами являются InP, InAs и твердые растворы на их основе.
GaAs и InSb применяются для изготовления туннельных диодов.
InSb и InAs благодаря высоким значениям подвижности носителей заряда используют для изготовления магниторезисторов и преобразователей Холла.
InSb и InP используют для изготовления тензометров.
GaAs широко применяется для изготовления полевых транзисторов в быстродействующих ИС.
2.9 Арсенид галлия GaAs
Наиболее эффективной акцепторной примесью в GaAs является Zn с ΔЕ0=0,08 эВ, предел растворимости Zn в GaAs равен 1026м'3. Наиболее эффективным донором является Se, ΔЕ0=0,008 эВ, предел растворимости - 1027м3. Высокоомный GaAs получают легированием никелем или хромом. Сопротивление возрастает в присутствии О2, что объясняется компенсацией доноров и акцепторов.
Арсенид галлия выпускается в виде монокристаллических слитков четырех марок: АГЭ, АГЭТ, АГДЦ и АГП (А и Г - арсенид галлия, Э и Д - электронного и дырочного типов, Т и Ц - легирующий элемент - теллур и цинк, П - полуизолирующий). Две цифры, обычно стоящие после буквенного обозначения, указывают: первая - номинальную концентрацию носителей заряда, а вторая является показателем степени десятичного порядка этой величины (например, в обозначении АГЭ - 4 – 15 цифры указывают концентрацию, равную 4*1015см-3).
Арсенид галлия n-типа, легированный селеном, применяется для изготовления туннельных импульсных диодов.
2.10 Фосфид галлия
GaP имеет рабочий температурный предел, равный 1000 °С. На GaP изготовляют фотодиоды с красным и оранжевым свечением. Фосфид галлия представляет собой монокристаллические слитки или дендритные пластины и выпускается шести марок: ФГЭТ - К/10, ФГЭТ - 0/20, ФГЭТ - 3/50, ФГЭТК - К/30, ФГДЦ - 3 и ФГДЦК - К. Буквы в числителе дроби обозначают: ФГ - фосфид галлия, Т, Ц и К - легирующие примеси (Те, Zn, O2), буква после дефиса - цвет свечения материала (К - красный, О - оранжевый, 3 - зеленый), а цифра в знаменателе - минимальную яркость свечения (кд/м2).
3 ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ЗАРЯДА В ПОЛУПРОВОДНИКАХ
3.1 Что такое подвижность
Подвижность носителей заряда - это отношение скорости направленного движения носителей заряда в веществе под действием электрического поля к напряженности этого поля.
1) В газе подвижность ионов и электронов обратно пропорциональна давлению газа, массе частиц и их средней скорости; подвижность электронов в несколько тысяч раз превосходит подвижность ионов.
2) В твердом теле подвижности электронов проводимости и дырок зависят от процессов их рассеяния на дефектах и колебаниях решетки.
3) В растворах подвижность ионов определяется формулой
U = Fu,
где F - постоянная Фарадея,
u - скорость движения иона (в см/с)
при напряженности электрического поля 1 В/см; она зависит от природы иона, а также от температуры, диэлектрической проницаемости, вязкости и концентрации раствора.
3.2 Некоторые свойства подвижности носителей заряда
На подвижность носителей заряда в основном влияют два физических фактора:
-
хаотические тепловые колебания атомов кристаллической решетки (рассеяние носителей заряда на тепловых колебаниях атомов кристаллической решетки),
-
электрические поля ионизированных примесей (рассеяние на ионах примесей).
При больших температурах преобладает рассеяние носителей заряда на тепловых колебаниях атомов кристаллической решетки.
Поэтому с увеличением температуры в этом диапазоне температурная подвижность носителей уменьшается (рис.63, 64)
В диапазоне малых температур с повышением температуры уменьшаются тепловые скорости хаотического движения носителей заряда, что приводит к увеличению времени пребывания носителя вблизи иона примеси, т.е. увеличивается длительность воздействия электрического поля иона примеси на носитель заряда. Поэтому в диапазоне малых температур с уменьшением температуры подвижность носителей также уменьшается (рис.64).
При увеличении концентрации примесей увеличивается и рассеяние на ионах примесей, т.е. уменьшается подвижность носителей заряда. Однако в диапазоне высоких температур преобладающим механизмом рассеяния носителей даже при большой концентрации примесей остается рассеяние на тепловых колебаниях атомов кристаллической решетки, и соответственно кривые температурной зависимости подвижности носителей заряда в диапазоне высоких температур практически не смещаются с увеличением концентрации примесей.
3.3 Измерение подвижности носителей заряда
3.3.1 Метод тока Холла
Эффект Холла можно исследовать не только с помощью традиционного измерения ЭДС Холла, но также с помощью определения тока Холла. Метод тока Холла был предложен и впервые реализован советскими учеными В. Н. Добровольским и Ю. И. Гриценко. Этот метод основан на измерении электрического тока, возникающего в образце при отклонении носителей заряда силой Лоренца, который по аналогии с электрическим полем Холла называют током Холла.
Как было отмечено в § 2.2, токовые металлические контакты закорачивают ЭДС Холла. По этой причине в приконтактной области образца магнитная составляющая силы, действующая на носители заряда, не компенсируется силой холловского электрического поля, и носители заряда перемещаются под некоторым углом относительно продольного электрического поля. Электрическое поле Холла полностью закорачивается контактами у концов образца, имеет максимальное значение в его средней части. Электрический ток, наоборот, максимален у концов образца и минимален в его середине, так как поле Холла действует на носители заряда в направлении, противоположном силе Лоренца, уменьшая поперечную составляющую тока. Очевидно, что чем короче образец, тем сильнее шунтирующее действие токовых электродов. Для очень короткого образца холловское поле полностью закорочено и носители заряда перемещаются под действием силы Лоренца под углом Холла относительно внешнего электрического поля. Закорачивание поля Холла металлическими электродами лежит в основе зависимости ЭДС и тока Холла от соотношения геометрических размеров образца и определяет эффект геометрического магнитосопротивления.
Рис. 3.1 – Модель полупроводникового образца
Проведем расчет тока Холла. Пусть прямоугольный полупроводниковый образец р-типа с омическими контактами на торцевых гранях помещен в магнитное поле с индукцией В (рис. 3.1). Размеры образца вдоль осей х, у и z обозначим соответственно а, Ь и w; координаты граней образца: х = ± а/2;
у = ± b/2; z = ± w/2. Магнитное поле направлено вдоль оси z; по образцу течет ток IХ,
Составляющая плотности тока jy является функцией координат x, y и в однородном образце не зависит от z. Пусть
Тогда плотность тока в образце
Ограничимся приближением для слабого магнитного поля rμрВ « 1. Условия (3.1) означают, что электрическое поле в образце безвихревое, поток носителей заряда постоянен и объемный заряд отсутствует. Вычислив rot rot=j, получим Δj = 0. Таким образом, задача нахождения j сводится к решению уравнения Лапласа Aj = O; применительно к составляющей плотности тока вдоль оси y
Граничные условия на боковых гранях образца можно записать в виде