86399 (612738), страница 8

Файл №612738 86399 (Динамические системы в плоской области) 8 страница86399 (612738) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

На основании всего вышеизложенного представляется геометрически очевидным, что траектории системы (58) имеют характер, представленный на рис. 20. Строго можно доказать это найдя уравнения траекторий в полярных координатах. Полагая

или

мы найдём

, (60)

и (61)

Рис. 19. Рис. 20

Интегрируя последнее уравнение, мы получим

Это и есть уравнение траекторий в полярных координатах. Траектории, проходящей через точку М0 ( 0, 0), соответствует значение

С =

Если

0 >1, то С > 0 и >1; 1 при и при

(Очевидно, при этом изменяется в интервале

.)

является решением уравнения (61). Если 0<1, to С<0 и < 1. Тогда

при и 1 при

Отсюда следует, что траектории системы имеют вид, указанный на рис. 20. Второе из уравнений (60) показывает, что если траектория проходит через точку

М0 ( 0, 0)

при t = t0, то = t + ( 0 — t0)

Состояние равновесия О (0, 0) так же, как и в случае линейной системы (45) примера 4, является фокусом, причем неустойчивым.

Траектория х2 + у2 — 1 = 0 (в отличие от того, что было в примере 6) не окружена замкнутыми траекториями. Она сама является изолированной замкнутой траекторией, и все траектории, проходящие через точки достаточно малой ее окрестности, стремятся к ней при t . Такая замкнутая траектория называется предельным циклом.

Подчеркнем, что на каждой траектории, лежащей вне предельного цикла, t изменяется от конечного значения

до +

Это можно выразить, сказав, что при убывании t точка на такой траектории уходит на бесконечность в конечное время. Таким образом, траектории, лежащие вне предельного цикла, не являются целыми. Напротив, все траектории, лежащие внутри предельного цикла, очевидно, являются целыми, т. е. t на них меняется от до . Направление на траекториях может быть установлено непосредственно из системы.

Так, например, при х = 0 и у > 0 мы имеем < 0, т. е. в точках оси у с возрастанием t х убывает. Этого, очевидно, достаточно для определения направления на всех траекториях рассматриваемой системы.



Пример8

(62)

Система имеет два состояния равновесия О(0, 0) и А (4, 0). Система, очевидно, имеет аналитический интеграл

— 6x2 x3 = C. (63)

Характер семейства кривых (63) нетрудно установить, рассматривая вспомогательное семейство кривых:

и = 6х2 — х3+ С. (64)

Так как у = , то семейство кривых (64) имеет вид, представленный на рис. 21. a, а семейство кривых (63) — вид, представленный на рис. 21, б. Состояние равновесия О (О, 0) лежит на интегральной кривой (63) при С = 0. Эта интегральная кривая состоит из четырех траектории состояния равновесия О, двух незамкнутых траекторий, одна из которых стремится к О при t , а другая при t и «петли», стремящейся к состоянию равновесия О как при t , так и при t .

Нетрудно убедиться в том, что состояние равновесия А (4, 0) принадлежит кривой (63), соответствующей С = —32. Эта кривая состоит из одной ветви и изолированной точки-состояния равновесия А. Остальные интегральные кривые не содержат состояний равновесия. При С < —32 кривая (63) имеет одну ветвь, расположенную левее бесконечных ветвей кривой (63) при С = 0. Если —32 < С < 0, то соответствующая кривая (63) состоит из двух ветвей, одна из которых есть замкнутая кривая (овал), содержащая точку А внутри себя. Наконец, при С > 0 кривая состоит из одной ветви (расположенной справа от кривой (63) при С = 0). Каждая ветвь интегральной кривой (при С 0) является траекторией.

Состояние равновесия А является центром (см. пример 5). Состояние равновесия О — седло, стремящиеся к нему при t или t траектории — сепаратрисы седла (см. пример 6).

Заметим, что сепаратрисой седла называется не траектория, а полутраектория. При этом, говоря о сепаратрисах, стремящихся к седлу, мы не считаем различными сепаратрисы, из которых одна является частью другой (например, С10 и С20 на рис. 22). С этой точки зрения в рассматриваемом примере к седлу стремится 4 сепаратрисы. Две из этих сепаратрис принадлежат одной и той же траектории —«петле».

Направление на траекториях может быть установлено, если, например, в первом уравнении (62) положить х = 0, у > 0. Мы получаем

что позволяет определить направление на траекториях (рис. 21, б).

Пример 9

(65)

Поле системы (65) может быть получено, если поле системы (62) повернуть на постоянный угол такой, что tg = а. Следовательно, траектории системы (65) ни в одной точке не касаются траекторий системы (62). В частности, замкнутые траектории системы (62) являются циклами без контакта для траекторий системы (65).

Для определенности предположим, что угол < 0. Тогда всякая траектория системы (65), пересекающая при t = t0 какую-нибудь замкнутую траекторию системы (62) при t , стремится к состоянию равновесия (А), а при возрастании t выходит из области, заполненной замкнутыми траекториями.

Состояние равновесия О (0, 0) системы (65) является так же, как у системы (62), седлом. Однако расположение сепаратрис седла у системы (65) (рис. 22) отличается от расположения сепаратрис системы (62).

И можно сказать, что сепаратриса системы (62) после поворота поля, т. е. после перехода к системе (64), «разделяется» на две сепаратрисы.

Сепаратрисы L системы (65), лежащие слева от оси у, расположены аналогично сепаратрисам системы (62).

Пример 10

Приравнивая нулю правые части, мы находим состояния равновесия системы

О (0, 0), F1 (—1, 0), F2 (1, 0)

Легко убедиться, что

(67)

есть общий аналитический интеграл системы (66).

Исследование системы кривых ((57) легко провести полностью аналогично тому, как это было сделано в примере 8. Пользуясь вспомогательным семейством кривых

, (68)

нетрудно построить семейство кривых (67) (рис. 23). Интегральная кривая

состоит из трех траектории — двух петель n состояния равновесия 0(0, 0). При С > 0 каждая кривая (67) представляет собой одну замкнутую кривую (овал), при С < 0 — два овала. Каждый из овалов является траекторией. При С = 1 мы получаем две изолированные точки — состояния равновесия F1 и F2 .

Состояние равновесия О седло, состояния равновесии F1 и F2 — центры.

Рис. 22 Pис. 23

Пример. 11

(69)

Легко видеть, что векторное поле системы (69) повернуто но отношению к векторному полю системы (66) примера 10 на острый угол, тангенс которого равен ( — 2х2 х4). Далее, непосредственно проверяется, что соотношение

( — 2х2 х4) = 0 (70)

является интегралом системы (69). Поэтому кривая (70), представляющая интегральную кривую системы (66), является также интегральной кривой системы (69).

Наконец, заметим, что внутри кривой (70) выражение — 2х2 х4 меньше 0, а вне — больше нуля. Сравнивая векторные поля систем (66) и (69), нетрудно видеть, что все замкнутые траектории системы (66) (рис. 23) являются циклами без контакта для траекторий системы (69).

На основании этого, можно показать, что разбиение на траектории имеет вид, представленный на рис. 24. а,при > 0 и на рис. 24.б при < 0.При > 0 все траектории, лежащие вне кривой (70) при t возрастающем, уходят на бесконечность, а при t «накручиваются» на кривую (70). Траектории, лежащие внутри кривой (70) при t , «накручиваются» на одну из простых замкнутых кривых, составляющих часть кривой (70), а при t стремятся к одному из состояний равновесия F1 и F2, которые являются «фокусами».

Рис. 24.а. Рис. 24.6.

Состояние равновесия О — седло, кривая (70) является предельным континуумом для траекторий, расположенных вне нее, а каждая ее петля (вместе с состоянием равновесия О) — предельным континуумом для траекторий, расположенных внутри этой петли. Аналогично обстоит дело при

< 0



15. Выводы

Приведенные выше примеры, на которых был проиллюстрирован целый ряд установленных выше предложений, одновременно являются примерами «исчерпывающего» исследования «качественной структуры» разбиения на траектории, т. е. «исчерпывающего» качественного исследования динамической системы.

С точки зрения качественного исследования знание точной формы траектории не представляет интереса: мы уже подчеркивали это, указывая на одинаковое «качественное поведение» траекторий в случае узла и фокуса. Однако существенный интерес представляет, например, знание числа состояний равновесия, факт наличия или отсутствия изолированной замкнутой траектории — предельного цикла, ход сепаратрис и так далее.

В приведенных выше примерах «исчерпывающее» качественное исследование разбиения на траектории удалось провести ввиду простоты рассматриваемых динамических систем. В примерах 1—6 динамические системы являлись линейными. В других примерах получены обозримые аналитические выражения для решения или интегралов. Это позволяло полностью решить вопрос о характере разбиения на траектории. Исследование характера разбиения на траектории в примерах 9 и 11 было проведено, опираясь на результаты примеров 8 и 10, на понятие циклов и кривых без контактов и на свойства поворота поля.Конечно, такое элементарное и исчерпывающее качественное исследование, как правило, не удается провести в случае произвольной динамической системы вида (I).

Мы не можем рассчитывать получить элементарные выражения для решений или интегралов в случае произвольной динамической системы. Вследствие этого даже очень простые но виду динамические системы, имеющие интерес в прикладных вопросах, требуют для своего качественного исследования создания специальных приемов. Примером этому может служить «система Ван-дер-Поля»

качественному исследованию которой посвящено большое количество работ. Таким образом, естественно встает вопрос об отыскании регулярных методов качественного исследования динамических систем или хотя бы о достаточно эффективных приемах такого исследования.

Подчеркнем еще раз, что даже в тех случаях, когда у рассматриваемой динамической системы существует аналитический интеграл (в смысле п. 13) и найдено его аналитическое выражение

Ф(х, у) = С (71)

(как это имело место в примерах 8 и 9), вопрос качественного исследования разбиения на траектории, как правило, не делается тривиальным. Он сводится, правда, к вопросу качественного исследования семейства кривых (71). Однако в настоящее время не существует регулярных методов качественного исследования семейства кривых (71) или отдельной кривой

F(x, y) = 0

Такие методы отсутствуют даже в том случае, когда функции Ф (х, у) и F (х, у) являются многочленами.Поэтому ни в какой мере не следует думать, что знание аналитического интеграла (в тех случаях, когда он существует) сразу же решает задачу качественного исследования динамической системы: оно просто сводит одну задачу — задачу непосредственного исследования разбиения на траектории, заданного системой (I) — к задаче качественного исследования семейства кривых вида (71).Поэтому представляется целесообразным отыскание методов или приемов непосредственного качественного исследования системы (I), без предварительного нахождения аналитических выражений для решений. Прежде чем переходить к описанию таких приемов, естественно установить некоторые общие свойства разбиения на траектории. Необходимо выяснить: каким вообще может быть разбиение на траектории, определенное системой (I). Вопросом, который при этом возникает первым, является вопрос о том, какие типы траекторий вообще возможны у динамических систем вида (I). В п. 5 было установлено, что траектории могут быть состояниями равновесия, замкнутыми и незамкнутыми траекториями. Однако это еще слишком общие, неконкретные сведения о возможном характере траектории (в случае незамкнутой траектории).

Размещено на http://www.allbest.ru/

Характеристики

Тип файла
Документ
Размер
11,84 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее