86264 (612702), страница 2
Текст из файла (страница 2)
Лемма 5 . Пусть группа содержит циклическую инвариантную подгруппу нечетного порядка и индекса 2. Если
- 2-разложимая группа, то группа
разрешима.
Доказательство. Применим индукцию к порядку . Если
, то ввиду леммы 1 фактор-группа
удовлетворяет условиям леммы. По индукции,
разрешима, отсюда разрешима и
.
Пусть . Если
- циклическая, то
разрешима по теореме В. А. Ведерникова. Поэтому
,
- циклическая подгруппа индекса 2,
. Пусть
, где
- силовская 2-подгруппа из
,
- ее дополнение. Если
, то
разрешима. Теперь
и
можно считать силовской 2-подгруппой в
. Так как
и
, то
. Пусть
и
. Тогда
и
. По лемме С. А. Чунихина подгруппа
максимальна в
и
. Представление группы
подстановками смежных классов по подгруппе
дважды транзитивное: если
- простое число, если
- составное. Из леммы 3 вытекает теперь, что
.Противоречие.
Доказательство теоремы 1 . Применим индукцию к порядку группы G. Пусть и
- циклические инвариантные подгруппы в
и в
соответственно, чьи индексы равны 1 или 2, а
и
- те силовские 2-подгруппы из
и
, для которых
и
есть силовская 2-подгруппа
. Будем считать, что
. Если
, то
и
разрешима по теореме Ито-Хупперта. Поэтому в дальнейшем полагаем, что
. Ввиду леммы 1 каждая фактор-группа удовлетворяет условиям теоремы, поэтому
Допустим, что . Если
, то
и
. Так как
разрешима, то
. Если
, то
и
разрешима.
Пусть теперь . Тогда и
. Так как
не является силовской подгруппой в
, то
содержится как подгруппа индекса 2 в некоторой 2-группе
. Обозначим через
силовскую 2-подгруппу из
. Очевидно, что
инвариантна в
.
Предположим, что и пусть
- инволюция из
. В
все подгруппы характеристические и
инвариантна в
, поэтому
и
. Пусть
- максимальная в
подгруппа, которая содержит
. Тогда
разрешима по индукции. Если
, то
содержится в
и
. Значит,
. Так как
- собственная в
подгруппа, то
,
и
. Теперь
- дважды транзитивная группа степени
на множестве смежных классов по
: если
- простое число, то применимо утверждение из, стр. 609; если
составное. Из леммы 3 получаем, что
. Противоречие.
Следовательно, . Если
, то
и
.Так как
не содержит подгрупп, инвариантных в
, то представление группы
подстановками по подгруппе
- точное степени 4. Поэтому
- группа диэдра порядка 8,
и
. В этом случае
неабелева. Напомним, что
и
. Таким образом, для силовской 2-подгруппы
из
имеем:
- группа порядка 4 или неабелева группа порядка 8 (если
).
Предположим, что порядки групп и
делятся одновременно на нечетное простое число
и пусть
и
- силовские
-подгруппы из
и
соответственно. Так как
инвариантна в
, a
инвариантна в
, то
и
- силовская
-подгруппа в
. Без ограничения общности можно считать, что
. По теореме VI.10.1 из группа
содержит неединичную подгруппу
, инвариантную в
. Но теперь
и
, а так как
инвариантна в
, a
разрешима, то
по лемме С. А. Чунихина. Противоречие. Следовательно, порядки
и
не имеют общих нечетных делителей. В частности, в группе
силовские подгруппы для нечетных простых чисел циклические.
Пусть - минимальная инвариантная в
подгруппа и
- силовская 2-подгруппа из
, которая содержится в
. Так как
, то
неразрешима и
. Подгруппа
даже простая потому, что силовские подгруппы по нечетным простым числам циклические.
Пусть вначале . Тогда
и
неабелева. По теореме П. Фонга из группа
диэдральная или полудиэдральная. Но в этих случаях
. Непосредственно проверяется, что диэдральная и полудиэдральная группа порядка 16 не является произведением двух групп порядка 4.
Предположим теперь что . Тогда
- элементарная абелева подгруппа или диэдральная. Если
абелева, то
или группа Янко
порядка 175560. Так как
неабелева, то
и индекс
в
четен. Группа
разрешима, поэтому
и
или
. Ho
группа порядка 3, a
. Противоречие. Если
- диэдральная группа порядка 8, то
- нечетное простое число или
. Но группы
и
не допускают нужной факторизации, поэтому
- собственная в
подгруппа. Теперь
или
. Если
, то
- диэдральная группа порядка 16, а так как
, то
. Противоречие. Если
, то
и в
существует подгруппа порядка
или
.
Пусть, наконец, . Тогда
и
. Так как фактор-группа
разрешима по индукции, то
и
. Используя самоцентрализуемость силовской
-подгруппы в
, нетрудно показать, что
не допускает требуемой факторизации. Теорема доказана.
Доказательство теоремы 2 . Допустим, что теорема неверна и группа - контрпример минимального порядка. Фактор-группа группы Шмидта есть либо группа Шмидта, либо циклическая
-группа. Поэтому в силу индукции и теоремы 1 мы можем считать, что
. Пусть
- произвольная минимальная инвариантная в
подгруппа. Если
, то
, а так как
- нильпотентная группа, то
разрешима по теореме Ито--Хупперта или по теореме Виландта--Кегеля. Отсюда разрешима и
. Противоречие. Значит,
, в частности,
разрешима. Допустим, что
. Тогда
и
удовлетворяет условиям леммы. Поэтому
изоморфна подгруппе группы
, содержащей
для подходящего
. Так как
есть прямое произведение изоморфных простых неабелевых групп, то
и
. Отсюда
. Подгруппа
инвариантна в
так как
, то
разрешима и
. Теперь
изоморфна некоторой группе автоморфизмов
, т. е.
из заключения теоремы. Противоречие. Значит,
.
Таким образом, если - произвольная инвариантная в
подгруппа, то
.
Пусть ,
- инвариантная силовская
-подгруппа,
- силовская
-подгруппа. Через
обозначим циклическую подгруппу в
, для которой
. Допустим, что
. В этом случае
и если
- подгруппа индекса 2 в
, то
- циклическая подгруппа индекса 2 в
. По теореме 1 группа
разрешима. Противоречие. Значит,
. Теперь, если в
есть инвариантная подгруппа
четного индекса, то
есть группа Шмидта с инвариантной силовской 2-подгруппой, что противоречит лемме 1.
Следовательно, и в
нет инвариантных подгрупп четного индекса.
Допустим, что , тогда
- группа нечетного порядка. Силовская 2-подгруппа
из
является силовской подгруппой в
и по результату В. Д. Мазурова группа
диэдральная или полудиэдральная. Если
диэдральная, то по теореме 16.3 группа
изоморфна
или подгруппе группы
. Так как
не допускает требуемой факторизации, то
следует из заключения теоремы. Противоречие. Значит,
- полудиэдральная группа. Если
- центральная инволюция из
, то
, поэтому
и
разрешима. По теореме Мазурова группа
изоморфна
или
. Нетрудно проверить, что
и
не допускают требуемой факторизации. Значит,
.
Пусть - максимальная в
подгруппа, содержащая
. Тогда, если
, то
и
содержит подгруппу
, инвариантную в
по лемме Чунихина. В этом случае,
и
. Противоречие. Следовательно,
.
Допустим, что не является силовской 2-подгруппой в
. Тогда
немаксимальна в
, а так как
и
, то по лемме 2 порядок
нечетен. Теперь
и
содержит подгруппу индекса 2. Противоречие.
Таким образом, - силовская 2-подгруппа группы
. Теперь,
и
- максимальная в
подгруппа. Представление подстановками смежных классов по
дважды транзитивное и по лемме 3 порядок центра
нечетен. Отсюда следует, что
- абелева группа.
Пусть - минимальная инвариантная в
подгруппа. Группа
не является
-группой, поэтому некоторая силовская в
подгруппа циклическая и
- простая группа. Теперь можно применить результат Уолтера. Так как и группе Янко и в группах типа
и нормализатор силовской 2-подгруппы имеет порядок
, a
, то
изоморфна
, где
или
. Фактор-группа
разрешима, поэтому
и
изоморфна некоторой группе автоморфизмов
, т. е.
из заключения теоремы. Противоречие. Теорема доказана.
Доказательство теоремы 3 . Пусть группа - контрпример минимального порядка,
- циклическая подгруппа в
и
, где
. Пусть
, где
- силовская 2-подгруппа
, а
- ее 2-дополнение в
. Если
- силовская 2-подгруппа
, то
и
разрешима по теореме Ведерникова. Противоречие. Теперь
можно считать силовской 2-подгруппой группы
.
Предположим, что . Фактор-группа
и
- 2-разложимая группа. Очевидно, что циклическая подгруппа
нечетного порядка инвариантна в
и ее индекс равен 1, 2 или 4. В первых двух случаях группа
разрешима по лемме 5, поэтому разрешима и
. Противоречие. Если индекс равен 4, то по индукции и учитывая, что
, получаем: группа
изоморфна подгруппе
, содержащей
для некоторых
. Противоречие. Следовательно, в
нет разрешимых инвариантных подгрупп, отличных от единицы.