86167 (612671), страница 2

Файл №612671 86167 (Дослідження локальних формацій із заданими властивостями) 2 страница86167 (612671) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Теорема 2.1. Нехай і – формації, причому або , або замкнута щодо нормальних підгруп. Тоді – формація, що збігається з добутком

Визначення 2.5. Нехай – деяка множина груп. Нехай – перетинання всіх тих формацій, які містять клас називається формацією, породженої множиною груп

Помітимо, що операцію часто позначають інакше через Якщо те пишуть замість , причому в цьому випадку називають формацією, породженою групою .

Теорема 2.2. Для будь - якого класу має місце рівність:

Доказ. Якщо , те , і твердження вірно. Нехай . Тому що , те клас є - замкнутим. є клас і по лемі 2.2. Використовуючи це й леми 2.3 і 2.4, одержуємо

Останнє означає - замкнутість класу . Отже, – формація, що містить , тому що . Виходить, . Зворотне включення очевидно.

Лема 2.5. Для будь - яких елементів групи виконуються рівності Якщо – підгрупи групи , то виконуються наступні твердження:

1)

2) для будь - якого гомоморфізму групи ; зокрема, якщо група з нормалізує й , те нормалізує й

Лема 2.6 Нехай – підгрупа нильпотентної групи , причому . Тоді

Доказ. Для того щоб довести лему, досить установити, що при будь - якому натуральному виконується включення:

При це вірно, тому що , а виходить, . Припустимо, що включення (*) справедливо при якімсь . Тоді, використовуючи лему 2.5, одержуємо

Тим самим (*) доведено.

Теорема 2.3 (Брайант, Брайс, Хартли [1]). Якщо – така підгрупа групи , що , то

Доказ. Нехай – нильпотентна нормальна підгрупа групи , а – така підгрупа з , що . Доведемо індукцією по , що . Це вірно, якщо . Тому будемо вважати, що . Розглянемо наступні підгрупи прямого добутку

Очевидно, підгрупа нормалізує й . Позначимо через підгрупу групи , породжену підгрупами . Оскільки проекції на множники прямого добутку рівні , те . Помітимо ще, що , де нормально в і нильпотентна як добуток з .

Нехай – центр підгрупи , . Легко бачити, що , причому й ; аналогічно, і . Але тоді , абелева й нормальна в. Якщо , те , де , і якщо , те , що тягне . Отже, . Якщо абелева, те , і ми маємо

Припустимо тепер, що . Ясно, що . Тому що

те нильпотентна щабля . Тому що , те ізоморфна й має щабель , а тому відповідно до леми 2.6 її нормальне замикання в має щабель . Тому що нормалізує й , те нормальна в. Отже, , причому . По індукції

Для групи і її нильпотентної нормальної підгрупи щабля теорема також вірна по індукції. Тому

Теорема доведена.

Теорема 2.4. (Нейман [1]) Формація, породжена розв'язною групою, містить лише кінцеве число підформацій.

Доказ. Нехай – підформація формації . Якщо , то по теоремі 2.3 має місце , що й потрібно.

Екрани

Недоліком поняття групової функції є те, що не завжди ущільнення - центрального ряду нормальними підгрупами є - центральним рядом.

Визначення 3.1. Відображення класу всіх груп у множину класів груп назвемо екраном, якщо для будь - якої групи виконуються наступні умови:

1) – формація;

2) для будь - якого гомоморфізму групи ;

3) .

З умови 2) випливає, що екран приймає однакове значення на ізоморфних групах, тобто є груповою функцією в змісті визначення 3.1. Крім того, видно, що якщо – екран, те кожний f - центральний ряд після видалення повторень може бути ущільнений до f - центрального головного ряду, а виходить, клас груп, що володіють f - центральними рядами, співпадає з формацією .

Лема 3.1. Нехай – екран, – група операторів групи , – деяка нормальна - припустима підгрупа з . Якщо володіє нормальним - припустимим рядом, фактори якого - центральні відносно , то один з таких рядів проходить через .

Доказ. Нехай даний ряд, що задовольняє умові леми:

Нехай . Тоді ряд

буде шуканим. У цьому неважко переконатися, використовуючи визначення екрана й - ізоморфизми:

Лема 3.2. Справедливі наступні твердження:

1) перетинання будь - якої непустої множини екранів також є екраном;

2) об'єднання будь - якого непустого ланцюга екранів також є екраном.

Доказ. Перше твердження очевидно. Нехай непуста множина екранів є ланцюгом, тобто лінійно впорядковано (з відношенням часткової впорядкованості , уведеним у визначенні 3.5). Тоді для будь - якої групи множина формацій лінійно впорядковано щодо включення, а отже, через лему 1.1 об'єднання є формацією. Тим самим лема доведена.

Визначення 3.2. Екран назвемо:

1) p - однорідним, якщо він p - постійний і для будь - якої групи і її силовської p – підгрупи має місце ;

2) однорідним, якщо він p - однорідний для будь - якого простого p;

3) локальним, якщо він є локальною груповою функцією;

4) композиційним, якщо для будь - якої групи має місце , де пробігає всі фактори групи

5) порожнім, якщо для будь - якої неодиничної групи ;

6) - екраном, якщо для будь - якої групи .

- екран при будемо називати одиничним екраном.

Легко бачити, що кожний локальний екран є однорідним, а кожний композиційний екран є примарно постійним.

Приклад 3.1. Нехай і – непусті формації, причому , а групова функція така, що для кожної групи й для будь - який групи . Тоді – однорідний екран, що не є ні локальним, ні композиційним.

Приклад 3.2. Нехай – непуста формація, а групова функція така, що для будь - який групи виконуються умови:

1) , якщо не має абелевих композиційних факторів;

2) , якщо має хоча б один абелев композиційний фактор.

Тоді – композиційний екран, що не є однорідним.

Зауваження 1. Локальний екран повністю визначається своїми значеннями на підгрупах. Щоб побудувати локальний екран , досить кожному простому числу поставити у відповідність деяку формацію , а потім для будь - якої групи покласти , де пробігає .

Зауваження 2. Щоб побудувати композиційний екран , потрібно кожній простій групі поставити у відповідність деяку формацію , а потім для будь - якої групи покласти , де пробігає всі композиційні фактори групи .

Лема 3.3. Справедливі наступні твердження: 1) перетинання будь - якої непустої множини однорідних екранів знову є однорідним екраном;

2) перетинання будь - якої непустої множини локальних екранів знову є локальним екраном;

3) перетинання будь - якої непустої множини композиційних екранів знову є композиційним екраном.

Доказ. Нехай екран є перетинанням множини екранів . Припустимо, що всі екрани є локальними, тобто для будь - яких і має місце рівність:

де пробігає всі підгрупи групи . Тоді

а виходить, – локальний екран.

Лема 3.4. Об'єднання будь - якого непустого ланцюга примарно постійних екранів є примарно постійним екраном.

Доказ. Нехай – деякий ланцюг екранів, – її об'єднання, . По лемі 3.3 функція є екраном, причому ясно, що постійність тягне постійність екрана . Припустимо, що все є однорідними екранами. Тоді, якщо – будь - яка група й , те . Отже,

що й доводить однорідність екрана .

Екрани формацій

Кожної групової функції відповідає формація .

Лема 3.5. є непустою формацією для будь - якої групової функції .

Визначення 3.3. Нехай – деяка формація. Якщо – такий екран, що , то формація називається східчастою формацією, причому в цьому випадку будемо говорити, що

– екран формації ,

має екран ,

екран визначає формацію ,

визначається екраном .

Формація має одиничний екран. Одинична формація має порожній екран.

Визначення 3.4. Екран назвемо внутрішнім, якщо – внутрішня групова функція, тобто для будь - якої неодиничної групи .

Лема 3.6. Кожна східчаста формація має принаймні один екран.

Доказ. Нехай – екран формації . Визначимо функцію в такий спосіб: для будь - якої групи . Легко бачити, що – екран, причому . Якщо й – головний фактор групи , то . Тому що клас - замкнуть, те , а виходить, - центральний Таким чином, . Отже, , тобто – шуканий внутрішній екран.

Лема 3.7. Нехай – екран формації . Тоді є екраном формації .

Доказ. Нехай – довільний головний фактор групи . Нехай . Тому що , те . Виходить, , тобто - в. Звідси треба, що .

Обернено, якщо , те головний ряд групи буде - центральним для будь - якого , тобто . Отже, .

Лема 3.8. Перетинання будь - якої непустої множини екранів формації знову є екраном формації . Крім того, якщо в є хоча б один внутрішній екран, те – внутрішній екран.

Доказ. Те, що – екран формації , безпосередньо треба з леми 3.7. Нехай у є внутрішній екран . Тоді для будь - якої групи . Виходить, – внутрішній екран.

Формація з однорідним екраном

Теорема 3.1. (Шеметков) Усяка формація, що має принаймні один однорідний екран, є локальною формацією.

Доказ. Нехай формація має однорідний екран. Через лему 3.6 формація має внутрішній однорідний екран . Побудуємо локальний екран , що задовольняє наступній умові: для будь - якого простого . Тоді й, отже, . Припустимо, що формація має групи, що не входять в , і виберемо серед всіх таких груп групу , що має найменший порядок. Тоді є єдиною мінімальною нормальною підгрупою групи . Тому що , те для кожного має місце

Якщо неабелева, то й . Якщо ж - група, то виходить, що - центральна в. А це суперечить тому, що . Теорема доведена.

Локальна формація

Неодинична формація, що має локальний екран, містить деякі неодиничні групи.

Визначення 4.1. Формація називається локальної, якщо вона має хоча б один локальний екран.

Визначення 4.2. Нехай – внутрішній локальний екран формації , що є максимальним елементом множини всіх внутрішніх локальних екранів формації . Тоді називається максимальним внутрішнім локальним екраном формації .

Теорема 4.1. (Картер і Хоукс [1], Шмид [5]). Локальна формація має єдиний максимальний внутрішній локальний екран , причому задовольняє наступній умові: для будь - якого простого числа p.

Характеристики

Тип файла
Документ
Размер
2,11 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее